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A graphical subtraction procedure for constructing the perturbative Green functions of light·cone finite, 
multiply localized products of fields is proposed. The existence of the Green functions as tempered 
distributions is proved, together with the properties of light·cone finiteness and localization on a line 
segment. The derivation of light cone expansions is sketched. but not treated in detail. 

1. INTRODUCTION 

A convenient operator expansion for displaying in 
concise form the light-cone singularities of products 
of fields would be one of the from1 

where N*[A(x)B()')] is a light-cone finite bilocal field 
(normal product), the OJ(x, y) are smeared out N* 
normal products, and the F j (Z2) are complex valued 
functions which are singular for Z2 tending to zero. 
In Ref, 1, an expansion of the form (L 1) has been 
shown to exist in a relatively simple example, that 
of the product A(x)A(y) in the perturbative A4 model. 
In that case, the F j are all powers of logarithms, and 
the OJ can all be expressed in terms of smeared-out 
light-cone finite normal products 

N*[a '" a A(x)a ,,0 a A(y)], 
1J.1 lJ. a VI Vb 

In certain respects, the construction of Ref, 1 falls 
short of a completely satisfactory realization of the 
program sketched above, To motivate the present work, 
it is useful to review the major deficiencies of that 
construction, 

(1) It depends on a rather unwieldy subtraction 
procedure, based on iterated application of Zimmer
mann's identities2 relating short-distance finite normal 
products, Although the subtractions have a recursive 
structure reminiscent of renormalization, no prescrip
tion for removing light-cone singularities on a graph
by-graph basis is given, 

(2) It does not establish uniform localization of the 
formally bilocal fields appearing in the light-cone 
expansion, A reasonable definition (presumably not 
the only one) of "bilocal" would require OJ(x, y) to be 
localized on the line segment joining x to y, with 
o t (x, y) commuting with all z which are spacelike with 
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respect to all points of that line segment. In the con
struction of Ref, 1, the formal bilocals are indeed 
localized on a segment of the line passing through 
x and y, but unbounded growth of the localization 
segment with increasing perturbative order is not 
excluded. 

(3) The construction cannot be generalized to other 
products of fields, such as products of currents in a 
charged scalar theory, without encountering formida
ble complicationso In Ref, 1, the analysis was consider
ably simplified by the limitations to logarithmic light
cone singularities and bilinear products of the basic 
fields and their derivatives, Such Simplifications 
could not be expected to persist for general field 
products. 

(4) There is no uniform (in all orders in the coupling 
constant) polynomial bound on the momentum-space 
growth at infinity of the vertex functions of the N* 
products defined in Ref, 10 Hand in hand with this is 
the necessity of increasingly many subtractions as 
one proceeds to higher orders, just as one finds for 
ordinary vertex functions in a nonrenormalizable 
theory 0 This suggests that outside of perturbation 
theory, the N* product may not be well-defined as a 
tempered distribution, requiring stronger large
momentum cut-offs than are provided by Schwartz 
class test functions, Moreover, there will be no 
renormalization group or Callan-Symanzik equations 
for the vertex functions of such normal products, 
making expansions such as (L 1) of only limited use
fulness in the phenomenology of theories with asymp
totic freedom, 

In this paper we define light-cone finite normal 
products which avoid the first three of the enumerated 
difficulties. We develop a graph-by-graph subtraction 
scheme which allows one to define a quite general light
cone finite normal product N*[nct>;(x + 8jO] localized , 
on the minimal line segment containing all x + 8 j i;, 
Our method comes tantalizingly close to complete 
success. For low order diagrams, we are able to 
maintain the desired control over the numbers of 
subtractions. We are unable, however, to establish 
convergence of the Feynman-parameter integral for 
graphs of arbitrary complexity without making addition-
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al subtractions. It is to be hoped that future investiga
tions will yield the key to pushing the full program 
through to completion, 

This article is organized as follows. In Sec. 2 the 
formal outlines of our subtraction scheme are developed 
in conjunction with a study of certain one-loop, two
loop and many-loop graphs. Later in Sec, 2, a precise 
formulation of the subtraction procedure is presented, 
and the corresponding convergence theorem is stated 
The proof of the theorem is given in Sec, 3, We con
clude, in Sec, 4, with a brief discussion of light-cone 
expansions involving our normal products, 

2. DEFINITION OF N* PRODUCTS 

We wish to define vacuum expectation values 

(2,1) 

whe re <P i and Z/J j are inte racting fields, and (2, 1) is to 
be a tempered distribution in x, Pu '" ,Pm E: IR4 which 
is a continuous function of ~ E: IR and e i E: IR. Note that, 
by taking various ei equal, we may define light-cone 
finite products of several currents. ) Let f be a 
Feynman graph contributing to (2.1), with r the 
graph obtained by identifying all vertices x + ei~' 
and let fl., (q) be the propagator for a line l of r, 
{k J be loop momenta for r, and 

be line momenta for r, Then the unrenormalized 
amplitude for f is formally 

where li is the line of r which is incident on x + ei~ in 
f, We must introduce subtractions into (2,2L 

A. A one loop example 

Let A be a scalar field of mass m with A4 interaction, 
and consider 

(2,3) 

If r is the graph of Fig, 1 (the vertex V represents the 
coalescence of x + ~ and x - U, the integral in (2.2) 
becomes formally 

For e ,*0, (2.4) is regularized by the ~2 term in the 
exponential, but the integral diverges (at (111=(112=0) 
for ~2 = 0, Zimmermann's short distance finite normal 
product N 2 lA(x + ~)A(x - ~)] of Ref. 2 is defined for this 
diagram by subtracting from the integrand its value at 
p=O; using 
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FIG. 1. One loop graph. 

1 d 
F(p)-F(O)=j dT-F(Tp) 

a dT 

we obtain 

xexp i{ ..• }. (2,5) 

The first term of (2.5) is convergent for all ~, but the 
second still diverges for ~2 = ° (although of course it is 
finite-in fact, zero, -when ~ - ° in nonlightlike 
directions), The example suggests a method for defining 
light-cone finite products: Working in terms of 
invariants p2, P • ~, and ~2, one subtracts at p2 = 0; 
here this gives only the first term of (2.5). Of course, 
in more complicated graphs, similar subtractions will 
be necessary for sub graphs as welL 

B. Preliminary definition of N* products 

We now give a preliminary version of the renormaliza
tion operation needed to define N* products; a final, 
precise ve rsion will be given below, Let r be a 1 PI 
Feynman graph for which each line l has propagator 

with Z, an invariant polynomial of degree P,; we write 
n(r), N(r), and m(r) for the number of loops, lines, 
and vertices, respectively, Suppose further that to 
each lPI I' c r we have assigned a subtraction index 
6(1'). Let I' be a lPI sub graph of r, let {kJ and {q,} be 
loop and line momenta for 1', and let] be forest of lPI 
sub graphs of 1', with Au '" AR the maximal proper 
subgraphs of I' in] and? =Y/A1A2 '" AR , Then define 
recursively 

Ip == 
J 

Here 

x exp i~, 'ql exp i Cl'l(tiio - (1- i€)~ - m~(l - i€»], 

(2.6) 

(2.7) 

(2,8) 
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for 6> 0, t6 = 0 for Ii < 00 In (206) if j is a vertex of 
Ai' P j denotes the total momentum entering this vertex 
from external and internal lines of y. Finally 

Remark: (a) t6 is in fact not well defined since its 
operand is not a covariant function for E > 0, and even 
if it were, it could not in general be written uniquely 
as a function of the invariants o Our refined definition 
below, however, gives an explicit formula for fr 
which avoids the difficulty. J 

(b) Ideally we would like to take 6(y)=d(y) where 
d(y) = 4n(y) - 2N(y) +L1EyPI is the superficial divergence. 
This choice, however, does not appear to give con
vergence; we try to illuminate the problems in the 
next sectiono 

C. Two-loop and multi-loop examples 

Consider first the contribution to (203) from the 
graph of Figo 20 Here the forest formula reduces to 
iterated (1-0 operations for y and r; since y does not 
involve V and d(y) = 0 it is natural to choose Ii(Y) = 00 
Then P * has the form (ignoring E dependence) 

jnda l (1 - t6(rJ)[fl (a) + f2(a)e + 6131 (Q)Pi • ~ 
i 

(209) 

The at> a 2 subintegration is convergent because of the 
I' subtraction, but the overall integration of the 
11> . 0> ,14 terms is respectively logarithmically, linearly, 
and logarithmically divergent, and convergenL If we 
take Ii(r)=o [note d(r)=O], the first and third terms are 
rendered convergent (V is homogeneous of degree 1); 
the 12 term appears to be logarithmically divergent but 
for e * 0 it is regulated by the W(a)e term in the 
exponential, and for e- 0 it vanishes [compare 
J o~2rl exp(- e/t)dt]o Thus subtractions of minimal 
degree suffice to give a light-cone finite normal 
product here 0 

Observe, however, that the subtraction of the 
subgraph I' has led to P 0 ~ factors in (2.9)0 Our sub
traction procedure (2.8) ignores these, thus oversub
tracting as far as momentum power counting is con
cerned o In general, oversubtraction at one level 

v FIG. 2. Two loop graph. 

r 
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v 

FIG. 3. Many loop graph. 

necessitates higher subtraction degrees at higher 
levels. 

This can happen to us. The contribution of Fig. 3 
to 

does not appear to yield a convergent amplitude if 
Ii(r) is chosen to be minimal (L eo, negative). Another 
way to view this difficulty is as follows: the a-space 
integral for P* in this case is similar to (2.9), but 
the function corresponding to W(a) vanishes in the 
interior of the integration region, and hence exp iW(a)e 
no longer regulates the term corresponding to 12(a)eo 
We conclude that we cannot systematically take 0(1') 
= d(y), in fact, we will need subtraction degrees which 
increase without bound with the order in perturbation 
theory. 

D. Final definition of N * products 

We will complete the definition of the P* operation 
by giving an explicit formula similar to that of 
Appelquist3 and Bergere-Zuber4 for the BPH P 
operationo Take r as in Sec. 2B, with y era 1PI 
subgrapho 

We introduce the standard combinatoric functions 
for y, i. e., fixing a vertex k and letting i, j denote 
vertices and s, t lines of y, we define 

U"(a)=6 n a/) 
T IrtT 

the sums running respectively over all trees T of y, 
all two trees T2 of y disconnecting i and j from k, all 
trees T of y for which the path in T from k to i passes 
through s in the same (+) or opposite (-) direction as 
s, and all sets T* formed by adding one line to a tree, 
such that the circuit in T* contains both sand t, 
oriented coherently (+) or incoherently (-)0 If J 
is a forest for 1', we follow Appelquist by introducing 
variables T x' A E J, and writing Ci 1= (n IE xE T~)al' 

J 
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V(CI', T) = nAE: } T~2n(A)U(a"), and 'f(CI', T) = T(a) for T = V, Y, 
or X. Finally, 

for any A E: J U {y}; the sum is over the maximal 
proper subgraphs )J. of A with )J. C J. Then we define 

Y' = n (- tW .») n z (; _a_)V(CI' T)-2 
) I.E:) TA IEr 'f ar, ' 

Here t~ extracts the Taylor series in T, centered at 
0, to order 5 (with t~=O if 6<0), r,=r, nA::",TA' 

pTVP=6V jjPj'P j , etc., andp j ·p j =P i op jo-(1-iE)pj·Pj, 
Pi' r, =piOr,o -Pi· r l , r,' rm= r,ormo - (1- iEtlr, ·rm , 

and similarly with r" rm replaced by ~" ~m' (For us 
the condition )J. ~ A includes the possibility )J. = A). We 
remark that (2.10), with ~j = 0 for all l, is the standard 
formula3

,4 for the P operation restricted to a single 
forest. 

We want to justify (2.10) by showing its relation 
to (2.6)-(2.8). Suppose then that either y is minimal 
in J or that we have justified (2.10) for all subgraphs 
of y. If we write 

Z j(q) =z ,(} a~jeXp(iq. r,) 1",0 

the integral of (2.6) becomes a Gaussian; evaluation 
of this integral yields (2.10) with no tT operator 
with T r = L By (2.7) this completes thJ case y E: J. 
[We omit a detailed derivation of this result. The 
only difficulty is in evaluating certain combinations 
of matrix products which arise on completing the 
square in the exponential. 

One observes, however, that these same expressions 
arise in a similar recursive evaluation of the P opera
tion, and that in that case the amplitude may also be 
evaluated in one step by a rescaling of integration 
variables4

; comparison of these formulas for the P 
operation then yields an evaluation of the needed 
expressions. ] 

Finally, if y E J, we must apply the Taylor operator 
of (2.7), (2.8). It is quite complicated to apply (2.8) 
directly since factors Pi 'P j and Pi '};, can both be 
generated by the spin terms; instead, to simplify 
our scheme, we scale with T> the momentum variables 
in both the p'rVp and pTY;Y (but not pTy~) terms, leading 
immediately to (2.10). The effect of this choice is that 
for certain terms, involving overall P • ~ factors re
sulting from the r derivatives, we are undersubtracting 
in comparison with (2.8). However, the increased 
subtraction degrees we use suffice to give convergence 
despite this undersubtraction. 
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Definition 2. 1: The * -renormalized amplitude for 
r is 

(2.11) 

with Y/ given by (2.10). Furthermore, (2.1) is defined 
by expanding in graphs and applying (2. 11), wi th ~ I = 8 j ~ 
if l is incident on x + e i~ in t; ~, = 0 otherwise. 

E. Statement of results 

We want to investigate Definition 2.1 for the case 
(2.2) arising in the N* product of several currents as 
well as for general ~. Thus let V be a fixed vertex of r 
and {L 1> ••• L k} a partition of the lines incident on V; 
let H denote the set of 1PI y c: r such that y intersects 
at most one L j' and suppose for convenience that all 
lines incident on V are oriented into V. Then we consi
der the hypothesis: (H) ~, = &j E]R4 if l E: L;0 = 1, •.• , k); 
~ ,= 0 otherwise 

The justification of Def. 2.1, proved in the next 
section, is: 

Theorem 2.2: There exists a choice of subtraction 
degrees 5(y) such that the integral in (2.11) is 
absolutely convergent for E > 0, and defines a tempered 
distribution in PH '"' , Pn which is continuous in E, ~ for 
[? 0 and ~ c: JR4N; if (H) holds we may take minimal 
subtraction degrees (6 (y) = d(y)) for y EH, and continuity 
then holds in E> 0 and t E: JR4k• 

Remnrk 2.3: (a) In fact we give an explicit recursive 
formula for calculating o(y) but do not claim that the 
result is optimal. 

(b) The subtractions for r itself are the terms of 
(2.11) with rCJ. Now consider (2.2): from (2.10), 
a counterterm is a linear combination of integrals 

(2.12) 

where P is a polynomial in p. The Fourier transform 
in P of the integrand in (2.12) is supported at x j 
= x + c j~; it follows from the definition of Y is that C j 

is a convex combination of 81' •.. , 8n , and hence the 
counterterm is (formally) supported on the minimal line 
segment containing all points x + e j~' Again, at least 
formally, this gives the same localization for 
N*(n<l>i(X+ ei~))' Some further discussion is given in 
Sec. 4. 

3. CONVERGENCE OF N* PRODUCTS 

We will divide our proof of Theorem 2,2 into several 
sections for clarity. 

A. Decomposition of integration region 

We follow Breitenlohner and Maison. 5 Consider a 
triple (C, B, a), where C is a maximal forest of 1PI 
subgraphs of r, B c C \ {r}, and a is a map aSSigning to 
each y E:C a line a(y) in y ~Y/Al "', Ap, with {Ai} the 
maximal subgraphs of y in C. The region f) (C, B, a) 

C {CI' I Cl'l? O} is defined by 
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nfl., ifZ=a(y), 
rCI.E] 

(3.1) 

and the restrictions 

fr"'O; l"'tr ",O,yr:f-B, yt-r; fr"'1,y E 8;1 "'f3!"'0. 

(3.2) 

We occasionally write f3!" 1 if 1 E a(C), Exactly as in 
ReL 5, we show that (2,11) becomes 

(3,3) 

where I/r is given by formula (2,10) for I/r but with 
'Jc , :1c 

_ t6(A) replaced by (1 - t6 (1.)) for >...ciJ3. 
TX T). 

B. Evaluation of,), and T derivatives 

We first observe that the combinatoric functions 
V(= Vr ), V, etc, satisfy 

(P1)W" is independent of TI. unless >... ~ M; Wrm=O 
unless lines 1 and m are in 11; if (H) holds, Em W;m ~m 
=0 for yEH. 

(P2) for any>... E C, we have homogeneity in the 
variables T~2 and {O'! IZE A}, with deg V=n(A), deg X 
=deg Y =deg V=deg W" = ° unless 11 C A; deg W" = 
- 1 if 11 C A, 

(P3) V, V and ( n T~)Xrs have the form p(O', T2)Yr1, 
r,sEA 

and WI. the form P(a, T2) (CPO n Vl. i )-l, with P a poly
nomial and {Ai} the maximal subgraphs of A in C ' 
[On first inspection it appears that WI. might contain 
factors T-,} for 11 C A, but this possibility may be 
eliminated using I]x IT,,=o= UI'[jI./" (Ref. 6), etc.] 

(P4) ~~ is a positive semidefinite matrix, 

To evaluate the spin terms it is convenient to use 
o/ar l = n TI.O/Or,. Differentiating and setting r=O, 

A3 1 

we see that nz, is replaced by a sum of terms 

Qo(p) n ~ 0')1h (Y) n Ih r(W~) n (Xlm n ~) "'m, 
rE( rEC\H I,m 1.3',m 

(3.4) 

where Q o is a p~lynomial~ndlh(y),ji1r(W~) are 
monomials in {YiJ and {(!!",Os=Zt W;t~t}, respectively. 
If (3.4) arose from n(a/or,Yi (with p~ '" p,) and if cr 
=deghl y , then 

k{y) = E pf - 2 E aIm - ~ C" '" 0; 
IEr l,mEr ,,~y 

"f/-H 
(3.5) 

note that we have used (P1) to restrict to y r:f-I! (taking 
I-! = () by convention when (H) is not assumed), and have 
grouped the factors of T as suggested by (P3). The only 
odd powers of T now occur in ~ ()''' so we use 
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here [n] is n/2 [resp. (n -1)/2] if n is even (resp, odd). 
Thus, if we insert (3.4) into (3.3), the result vanishes 
unless 0(>...) '" k(>...) for all >... E B, and otherwise is a sum 
of terms 

(3,6) 

xexpi (PTVp+pTY~-tE~WI.~-~O'lm~(l-!E)]1 E 
I. ~I.=o, I. 8 

TJ>.,=l, Art'E 
(i (I.)(k (I.) 

and 

)

=[(O(>"')_k(A»/2]+1' ifO(A)",k(A), A'l-B, 

el. =0, 0(>...) < k(>...), A'l-B, 

'" [(0(>"') - k(>...»)j2], A EB, 

(3,7) 

We next carry out the 7) derivatives. Then, aside 
from the exponential, (3.6) becomes a sum of terms 

Q 6(P)f) (U-2)1h1 (f) Y)1h 2 (f) V) n [Ih~ (Owr!;llh;(o ~ TWr~)] 
1''1- H 

X n (Ox1mn7)"'m, (3.8) 
',m 

Here (with some abuse of notation) n(U)-2 denotes 
some product of (0/07) operators on 0-2 , 1h 1 (OY) 
a monomial in the 7) derivatives of {Y is}, etc. We 
still have cr=deglh~ and, if deglh~= c;, then from (P1) 

~ c~"'Eey. 
YCA Tel. 

~ 

Further, (P3) implies that (3.8) has the form 

with P a polynomial, and (P2) shows that (3.10) is 
homogeneous in 7)~1, {O', Iz E A} of degree 

[Note that each 0/07)/. contributes + 1 to (3.11).] 

Now set 7)1' = 0, y E8. For 11 EC we let p. denote 

(3.9) 

(3.10) 

jJ. modulo its maximal proper subgraphs in in B; then 

so that (3.10) becomes 

Q(P, ~ )R(a, 7) 

n
A
Ui)q(l.) 
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where R=plry.o,co B' Moreover, (3.12) has degree 
(30 11) in ,,-

C. Change of integration variables 

Introduce the variables{/ x, i3,}by (3.1)0 By standard 
arguments7 

where Ej,.?- 1, and j(v) =n(v n 11) is precisely the degree 
of homogeneity of fj1i- in {O' III E v}, if v EB, or in 1]~1, 
{O' I Il E v} if v rf B. Thus the homogeneity of (3012) 
implies that when multiplied by the Jacobian 
nt~(X)-1 it becomes a sum of terms of the form 

whe re I F I <; 1 and 

b).?- N(X) - 2n(X) - ~ (c" + c~) - 6 aim + ex> 
"t'\ l.mEX 

with equality in (3.14) if X EB. 

(3.14) 

In order to be able to do the tr integration explicitly 
we write 

By (P2), A is independent of tr; recall that ~s· ~t 
=(l_iE)-1 (~~~~(l-iE)-L'~t), so by (P4)lmA 2 ?-0 
and we take 1m A > O. Then 

exp (- f ~~ ""'0= J: dW[- itr(l- if)/ 1T]1 /2 

xexpt i{tr (l - iE)w2 
- WA» (3.15) 

Since (3.15) is absolutely convergent, it suffices to 
prove absolute convergence and E, ~ continuity of 
(3 06) with the substitution (3.15), i. e., using (3.13), 
of 

J dwnd/-L(1]).)ndi3,nt~).-ldt).t~/2Q(p, OF(t, 13,1]) 

x exp{i(pTy~ + wA) exp{itr(pTyp - M(l - if)]}. (3.16) 

Here Y = fr1 11 is independent of tr , 

and the integration region for 13, t is (302). 

D. Estimates for convergence and continuity 

To verify absolute convergence of (3016) we note 
that F and the first exponential are bounded by 1, 
the second exponential by exp(-EtrM)o When these 
bounds are inserted in (3 016), the resulting tr integral 
can be done explicitly if br > 0 to give r(br + t)(EM)-(br+ ll2J ; 

thus we need only the estimate (verified below) 
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where a>~, a). < 0 if X EB and a).> 0 if X rtB 0 On the 
other hand, we may evaluate the tr integral in (3.16) 
directly to give 

It is easy to verify that Y / M is uniformly bounded; 
hence7 for any Schwartz test function ~(P), 

is a continuous bounded function of t, 13,1] and E for 
E?- O. Using Lebesque dominated convergence and 
estimating as above we see that as a distribution 
(3.16) is continuous for ~ E R4N and E?- 0 [or, under 
(H), fort E R 4k ,E?-0]. 

It remains to verify that (3.17) and br > 0 can be 
ensured by suitable choice of <5(y)o Write <5(y) = d(y) 
+ D(y), and take D(y) =0 if (H) holds and y E H; other
wise, choose <5(y) recursively so that for any forest 
J of proper lPI subgraphs of y, 

(3.18) 

Then if y EC, y rtB and q cB is a family of disjoint 
subgraphs of y, (3.14), (3.7), (305), and (3 018) imply 

2(by - 6b).)?- D(y) + 1 
q 

-:0 D("A)-:0 (c" +2c:J?-1 (3.19 ) 
'E<t "Cy 

(or ?- 2 since the b's are the integers): note y EH implies 
/-LEH for /-Ley, hence c,,=c~=Oo 

In particular, with y = rand q =~, (3016) yields 
br ?- 1. For X EB, define f). inductively by 

and note that for any y E C , 

where q cB is some family as in (3019). 
Choose e with 0 < 8 < IB 1-1, then 

Now (3.14) follows immediately, using (3.19) and 
(3.20). This completes the proof of Theorem 2.6, 

Remark: The basic requirement on <5(y) is that 

J.H. Lowenstein and E.R. Speer 1864 



(3.19) be satisfied; (3.18) can be modified to give 
somewhat smaller o(y) while maintaining (3.19). 

4. DISCUSSION OF LIGHT-CONE EXPANSIONS 

Having specified a graph-by-graph subtraction pro
cedure for Green functions of light-cone finite, multi
local products of fields, we now consider the question 
of whether such field products can be used to construct 
a light-cone expansion of the form (1.1). That this 
can be done is guaranteed (at least formally) by the 
recursive nature of the subtractions, and the broad 
outlines of such a derivation will be presented below. 
A detailed, rigorous treatment would require consider
able additional effort and is probably premature. At 
this point, higher priority should be given to the task 
of improving the subtraction scheme so as to control 
the large-momentum behavior of vertex functions in 
a "renormalizable" way, 

As a caveat to future investigators in this field, it 
should be pointed out that in searching for a suitable 
definition of light-cone finite normal products one must 
always make provisiion (if only at the level of a 
plausibility argument) for an eventual light-cone ex
pansion. This is because the latter, by relating normal 
products to ordinary products of fields, allows one to 
establish, almost immediately, the legitimacy of the 
normal products as localized, covariant operator 
fields. 

As mentioned above, the crucial property of our 
subtraction scheme which leads to an expansion (1.1) 
is its recursive nature, expressed in Eq. (2.6). That 
formula must be understood in the following sense: 
[hY is to be written in the standard a-parametric form, 
namely (2.10) with y omitted from the final product 
over It E J, and t6

(Y) is to be understood as a Taylor 
series in T Y' We see that IjY will then have the general 
form J 

Ij; =exp[iF(YY)od~M~(P, ~)G~(a, en, (4.1) 

where {PJ is the set of external momenta of y, ~l = e,~ 
are assumed to be nonvanishing only for I incident on 
the normal-product vertex, ~ is a monomial, and 

Following Zimmermann2 in his derivation of algebraic 
identities relating momentum-space integrands, we 
may iterate (2.6) to obtain 
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!l;r =Z;AIj~(YJ(7l(lj; (y»)" (4,2) 

where y is the smallest element of J containing the 
normal product vertex and J (y) is J restricted to y, 
The index a runs through the terms of (4.1), with the 
factor ~(j), ~) exp [ijJT(¥, Y)o~ incorporated in (Ij}\j[y»). 
and G~(a, ~2) included in (Ij](y»).' Integrating over a 
and summing over all rand J, one obtains an identity 
for Green functions which one can write in the shorthand 
form 

Nt( t'I cf>i(X + ei~) ,.1 

= n cf>j(X + ei~) +"'Lt J dry F r (71, ~2) 
1=1 r 

(4.3) 

where the derivative operator Dr may contain factors 
~ • a/ax as well as a/ax"', and the

i 
subtraction degrees, 

which may be greater than minimal. 

Extracting powers of If and In ~2 in F r (71, ~2), and 
applying the LSZ reduction formula to obtain an opera
tor relation, one obtains a multilocal, light-cone ex
pansion generalizing (1.1). Since, for any y, I¥' Y I <;; 1 
[see Remark 2, 3(b)), the support of F r (71, ~2) is contained 
in 171 I"" 1. The localization of N*(fI cf>j(x + ej~) on the 
line segment connecting x + emln~ 1'0\ + emax~ then 
follows from the operator light-cone expansion by 
mathematical induction in the perturbative order. 
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