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Complex-dimensional renormalization is defined for an arbitrary Feynman amplitUde and shown to 
be equivalent to BPH renormalization. Using quantum electrodynamics as an example, Ward 
identities are proved; here Carlson's theorem extends the identities from integer to <;Qmplex 
dimension. Both complex dimensional and analytic regularization are necessary at intermediate 
stages. 

In Ref. 1, t'Hooft and Veltman propose a renormaliza
tion method based on the generalization of the dimension 
of space-time to a complex number. (Such a generaliza
tion was previously proposed by Regge2 - 5 to discuss 
analytic properties of Feynman amplitudes.) In this 
paper we verify that the method indeed gives a renor
malization (proved in Ref. 1 for graphs continuing up 
to two loops; see also Ref. 6) and use Carlson's theorem 
to show that it maintains Ward identities. (We will 
actually discuss Ward identities in the case of QED, but 
the methods used are in no way speciaL) We define an 
intermediate regularization which includes both complex 
dimension and the usual A. regularization of analytic re
normalization, to give amplitudes which are well defined 
in all integer dimenSions; when all the A parameters are 
set to 1, the regularization of Ref. 1 is recovered. 

1. REGULARIZATION 

We suppose given a connected Fe}'1lman graph G with 
m vertices VI"'" Vm and L lines {II"'" IJ ::::: £'; h ==: 
L - m + 1 will denote the number of loops of G. [When 
other graphs enter the discussion we write m(G), £,(G'), 
etc.] The line 1 E £, has initial vertex Vii and final ver
tex Vj , and we associate with 1 a complex variable A z ; 
the point AO E C L is speCified by AZ ::::: 1, alII. (Multiples 
of variables are denoted by boldface.) Finally, n-dimen
sional Minkowski space Mn uses Lorentz inner product 

n-1 
p.q =Pllqvgllv :::::pOqO - 6piX i 

1 

and Fourier transform 

lsisjsm. 

We begin by discussing scalar particles, so that each 
line 1 has propagator ~Z(AZ) E S'(Rn) 

_ i 
~I(A) - ---'----. 

z - (m2 _p2 _ iO)AZ 

The physical propagator is obtained by setting A
Z 

== 1. 
For ReAz > n/2, ~z is a continuous function of x E Rn, 
and hence the Feynman amplitude y'(A., n) E S'(Rnm), given 
by 

y'(A., n)(x) ::::: n AI(AZ)(Xj - Xi ), 
J) 1 1 

is well defined. Its Fourier transform is easily calcu
lated7: 

- (hn) y'(A., n)(p) = fa(A., n)r 6 Al -"2 
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X 0 (1 - ~O!l) d(0!)-n/2 (60!Im¥ 

_ D(O!, S»)(hnI 2-r.A/) (1.1) 
d(O!) , 

where 

fG(A., n) ::::: «211)nI2(- i)m-1/2Cnh/2)n.cr(AI»' 

and d(O!),D(O!, s) are the Symanzik polynomials for G. We 
sometimes write l' == lim .-0+ 1'. , where 1'. is defined by 
replacing each mT in (1.1) by mr - iE. 

Definition 1.1: The (analytically and complex
dimensionally) regularized amplitude y'(A., II) for the 
graph G is obtained from (1.1) by replacing n by the 
complex variable v. 

We remark that this definition is equivalent to that of 
Ref.! (except for the presence of the A'S); in particular, 
it is obtained by applying the formulas of Ref. 1, Appendix 
A, to ap-space Feynman integral. 7'(A., II) may be con
sidered as an element of S'(Rn.m) for any n, since it 
depends only on the invariants s ij • 

Theorem 1. 2: y'(A., v) may be analytically continued 
to a meromorphic function of (A., v) E CL+1, having Simple 
poles on the linear varieties 

IIH ::::: 6 >"1 - h(H) J:'. ::::: - k, 
.c (H) 2 

(1. 2) 

for each irredUCible subgraph H of G and positive integer 
k (H is irreducible if it is connected and cannot be dis
connected by removing a line or vertex). 

Proof: We introduce into (1. 1) the scaling trans
formations of the O! variables used in the tlteory of 
analytic renormalization. 7 Then 7'(A., v) becomes a sum 
of integrals of the form 

" 11 11 v -1 / c5( LJPi)r(IIG)fG(A., v) ... ntH
H dtHE(t)-V 2 

o 0 H 

x (6 m 2 {3 (t) _ F(t, S») -VG (1. 3) 
.c I I E(t) , 

where nH is over an "s family" of subgraphs H which 
are irreducible or consist of a single line. In (1. 3), {31 
is a monomial in the tH with {31 ::::: 1 for some 1, E and F 
are polynomials with E strictly positive in the region of 
integration. When the factors t;;n-1 in (1. 3) are regarded 
as distributions,7,8 (1. 3) is well defined for all A, II, and 
the singularity structure of (1. 2) emerges. [Actually, in 
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2 Eugene R. Speer: Renormalization and Ward identities 

(1. 3) we have H ;c G; the singularity (1. 2) for H = G 
arises from the factor r(IIG). Similarly the apparent 
poles of (1. 3) ariSing from the cases where H = {l} are 
cancelled by the factors r(~I)-l in!G(A, II).] 

We now extend the definition to the case of particles 
with spin 1 or :v2 ; we assume that a particular represen
tation {y II / p, = 0, 1, ... , n - 1} of the Clifford algebra 
C(Mn) has been chosen in each dimenSion, such that the 
trace of any product of an odd number of y's vanishes. 
We will actually normalize the trace to satisfy Tr(1) = 4 
in all dimensions. 1 Now the amplitude for any process, 
calculated in n-dimensions, is a linear combination of 
certain tensor forms 

P/', gllV, tJ j , tJjyll, etc. (1. 4) 

(with distributions similar to 1. 1 as coefficients). How 
are we to interpret these tensors when n is replaced by 
the complex variable II? 

The solution proposed in Ref. 1 is threefold: 
(a) external momenta are always from M 4; and all y 
matrices are eliminated before introducing the complex 
dimension by (b) evaluating the trace for closed loops of 
spinor lines and (c) inserting projection operators, and 
then taking the trace, for open spinor lines. For simple 
graphs this procedure is adequate; however, when recur
sive subtractions are necessary, difficulty is encountered, 
particularly with procedure (c). That is, it is unclear how 
the amplitude (or vertex part) for a subgraph can be in
serted recursively into the amplitude for the graph if we 
have defined only its traces when multiplied by various 
y matrices. 

For this reason we will treat tensors such as (1. 4) as 
symbolic quantities, which may be interpreted as exist
ing in whichever dimension is necessary at any time 
(4 for physical renormalization, arbitrary n for recur
sive subtraction). To regularize an amplitude we there
fore express it as a linear combination of these symbolic 
forms in dimension n, then replace n by II in the co
efficient distributions. As in Ref. 1, an additional poly
nomial II dependence of these coefficients is generated 
by contractions via the relation gil" = n. 

Finally, we define similarly re~ularized amplitudes 
for generalized graphs. Let Q = tu 1'" .Un } be a parti
tion of {Vi"" Vm }, with Uj = {Vii"" V im(j)}; let G(Uj ) be 
the subgraph of G formed by all lines joining vertices in 
Ui ; and let G be the graph obtained from G by contract
ing the subgraphs G(Ui ). Suppose we are given vertex 
parts 

~(Ui) = 0, if G(Ui ) not IPI, 1
1, if mj = 1, 

oCEPia)Di (Pja ) otherwise, 

with Di a Lorentz-invariant polynomial, of degree at 
most equal to 

(1. 5) 

where r
l 

is the degree of the polynomial in the numerator 
of the lth propagator. (Note that this superficial diver
gence is computed in dimension 4.) The coefficients of 
D may depend on A, II. X (U j ) may be interpreted as de
fining a vertex part in any particular dimenSion, accord
ing to the interpretation above. 

In dimension n we form the amplitude 
M 

1"Q.~ (A, n) = 0_ .60 1(,\) ° X(Uj)' 
.c(G) j o l 

(1. 7) 
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Equation (1. 7) is again a linear combination of invariant 
tensors with coefficients similar to (1.1), so that we may 
define 1"(~, II) for any II as above. Symanzik rules for 
these amplitudes are worked out in Appendix C; for 
future use we note that each coefficient is a sum of terms 
of the form (compare 1. 3) 

~ ( . ~ r 1 r 1 v -j -1 -v/2-j 
JG A,II)r(IIG -JG)6(LJPj )Jo ••• Jo OtH

H H dtHE{J(t) 
H 

x P(t, s, 1I)[~m¥i3I(t) - Fe(t, s)/Ea(t) r( "G - iG) , 

(1. 8) 

where j,jH are positive integers and P is a polynomial. 

2. RENORMALIZATION 

The regularized amplitudes are renormalized1 by a 
slight variation of the standard BPH scheme of recursive 
subtractions. In the a-space context of this paper we can 
use the (minimal) counterterm structure associated with 
generalized vertices of the graph, Le., we make sub
tractions only for those divergent subgraphs conSisting 
of all lines connecting a given subset of the vertices. (In 
ap-space formulation as in Ref. 1 subtractions for addi
tional divergent loop integrations are necessary.) 

In this section we use dimensional regularization only, 
Le., we set A = AO at all times, and will therefore omit 
the ~ dependence of the amplitudes. 

Definition 2.1: Iff(lI) has an isolated singularity at 
II = 4, let Kf be the singular part, defined by 

Kf(lI) = J ~(II') dll' 
I ,,'-41=r II - II 

for /11 - 41 < r. 

Definition 2.2: Let 'Y(II)(Vi ) = 1, and suppose induc
tively that we have defined 'Y(II)(V{, ••• , V~,) for all 
generalized vertices {Vl' .•. , V;,} c {V v ..• , V m}, with 
r' < r. Then 

iP(II)(V{, ... , V~) = P1"Q.1J(II)(V{, ... , V;), (2.1) 

'Y(II)( Vi, ... , V~) = - KiP(lI)( V1, ... , V~), (2.2) 

(P(II)(V{, ••• , V~) = <P(II)(VV ••• , Vr ) + 'Y,,(Vl"'" V~). 
(2.3) 

In (2. 1) the sum is over all partitions Q of {Vi, ... , V;} 
into at least two generalized vertices. (P(II)(VV "" Vm ) 

is then the renormalized amplitude for the graph G. 

We prove below that 'Y(II)(VI , ... , V;) is in fact a ver
tex part; this was shown in Ref. 1 for graphs containing 
up to two loops. [Actually, it is necessary to know this 
inductively for r' < r in order that (2.1) be well defined.] 
Formulas (2. 1)-(2.3) exactly parallel the BPH scheme 
except that renormalization is effected by discarding a 
pole in the complex dimension II rather than discarding 
low order terms of a Taylor series. 

We wish to compare (2.1)-(2.3) with the BPH CR 
operation, and will follow the notation of Ref. 9; in par
ticular, if W(II) is an amplitude associated with some 
generalized vertex {VI' ..• , V;}, and W(II) = 6(~Pi)F(II, p), 
then M'W = 6(~Pi)G(II,P), with G the Maclaurin series 
for F in p up to order p,(V1, ... , V;). Define finite vertex 
parts by 

1
1 ifr=l 

X(II)(V{, ••• , V;) = 0 if G(!J, .•• , V;)IPR (2.4) 
(1 - K)M(P(II)(V1, •.• , V;) 

otherwise . 
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[X is certainly a vertex part, by definition of M; it is 
"finite" because the (1 - K) factor removes the singu
larity at II = 4.] Let <R', X', CR' be the BPH quantities 
defined using this finite renormalization and complex 
dimensional regularization: 

CR'(II)( V1, ... , V;) = ~2"' Q.!I' (11)( Vi, ••• , V;), 

X'(II)(Vi, ••• , V~) = - MCR'(II)(Vi, ••• , V;) 

+ X (II)(Vi, ••• , V~), 

(2.5) 

(2.6) 

<R(II)( V1, ... , V~) = CR(II)( Vi, ••• , V;) + X '(11)( Vi, •• " V~), 

(2.7) 
with ~Q as in (2.1). 

Theorem 2.3: For any {Vi, ••• , V;} C {VI"'" Vm }, 

X'(II)(VI ,.··, V;) = 1/(II)(VI,.··, V~), 

CR'(II)( VI' ... , V;) = (5)(11)( VI' ... , V~), 

<R'(II)(V1, ... , V;) = (l>(II)(VI, ... , V~). 

(2.8) 

(2.9) 

(2.10) 

Corollary 2.4: The complex-dimensional renormal
ization of Definition 2. 2 belongs to the class of BPH 
renormalizations. 

Proof: This is precisely the content of (2. 10). 

Corollary 2.5: 1/(11) is a vertex part. 

Proof: This follows from (2.8), since X '(11) is a 
vertex part. 

The crucial lemma is 

Lemma 2. 6: <R'(II)(V{, ••• , V~) is analytic at II = 4. 

Since we expect the <R operation to remove all diver
gences, Lemma 2.6 is intuitively reasonable. The proof, 
however, is complicated by the complex-dimensional 
regularizations; we relegate it to Appendix A. 

Proof of Theorem 2.3: Formulas (2.8)-(2.10) 
certainly hold if r = 1; suppose inductively that they hold 
for all r < r o. Then from (2.1) and (~. 5), using (2.8) for 
r < r o, (2.9) holds for r = roo Thus X (II)(V{, ••• , V~o) = 
(1 - K}MCR'(II)( Vi, ... , V~ ), and from (2.6), X'(II)(V{, ... , 

o 
V; ) = - KMCR'(II)(Vi, ... , V~). Since K2 = K, KX'(II) 

o .0 

(Vi, ••• , V~ ) = X'(II)(Vi, ••• , V; ). But from Lemma 
2.6, 0 0 

0= K<R'(II)(VI , ... , V~) o 
= KCR(II)(Vi, ••• , V;) + KX'(II)(VI , ... , V~) o 0 

=- 'Y(II)(VI , ... , l';) + X'(II)(VI ,· .. , V;), 
o 0 

proving (2.8). Equation (2.10) follows immediately from 
(2.8) and (2.9). 

3. WARD IDENTITIES 

We will use QED as an example in this section, but the 
arguments given are quite general. Consider then a 
particular Ward identity, e.g., for the vacuum polariza
tion tensor: 

(3.1) 

We wish to prove a regularized version 
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(3.2) 

Then the recursive subtractions of (2.1) preserve (3.2) 
(the proof is the same as for any gauge-invariant 
regularization), and the (1 - K) operation in (2.3) yields 
a renormalized amplitude which also satisfies the Ward 
identity. 

There are three difficulties in establishing (3.2): (a) 
in complex dimension the contraction over the index P-
is meaningless (as explained in Sec. 1 we do not take 
external vectors as four-dimensional); (b) even in integer 
dimensions divergent quantities are involved, and the 
formal proofs are therefore suspect; and (c) the usual 
manipulations to establish (3. 1) are based on the p-space 
integral form, which is not available to us when II is 
complex. We will treat these difficulties in turn. 

The problem of contractions in nonintegral dimension 
is handled by regarding Ward identities as relations 
between the coefficients of various tensors. In (3.2), for 
example, write II 1'0(11 ; k) = A(II, k2)g1'0 + B(II; k 2)kl'k O

, so 
that the Ward identity becomes 

(3.3) 

Now (3.3) makes sense for all values of II (and we prove 
it below). All Ward identities may be interpreted in 
this sense. (It is necessary to first choose a linear 
basis for all the tensor forms, and express all amplitudes 
in terms of this basis.) We will usually not mention this 
explicitly in what follows. 

Before proceeding we introduce the follOwing notation. 
For any QED graph G, with 1 a Fermion line incident on 
an external photon vertex Vi' let Gz, i be the graph obtained 
from G by replaCing 1 with a scalar particle, and remov
ing the y matrix associated with 1';; let Cz• i be obtained 
from Gz• i by contracting 1. Then the amplitudes for these 
graphs are related by 

Lemma 3.1: 

2"'GI.i(A., II) 1 Az =0 = i2"'c; . (A., II). Z.' 

Proof: With II an integer, the lemma follows 
immediately from the p-space Feynman integral, using 
,3,zl A1=0 = i. For nonintegral II we argue directly from 

(1.1), treating the factor Il~Z-l [= (Ilz):z-I] as a distri

bution and uSing8 {1l>-l/r(~)IAI =0 = (j(ll z). By holding 

Re ~l' ~ 0, l' ;" 1, divergence difficulties are avoided; 
the result extends to all A. by analytic continuation. 

To treat difficulty (b) we prove a modified identity 
involving the ~ts. The propagator S(~,p) = i(JI + m) 
(m 2 - p2 - iOtA satisfies a generalization of the usual 
Ward-Takahashi identity: 

S(~a'P).}(S(~b'P + k) = - S(>la,p)1:..(~b - 1,p + k) 

+ 1:..(~a - 1,P)S(Ab,P + k), (3.4) 

where a is the scalar propagator of mass m. Inserting 
(3.4) into the p-space Feynman integral for 2"'G immedi
ately proves the integer dimension case of 

Theorem 3.2: Suppose that G is a QED graph with 
VI an external photon vertex and a, b the fermion lines 
inCident on VI' Then 
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P,~, 

FIG. 1. A A - regularized identity. 

, 

8 
FIG. 2. The identity with A regularization removed. 

(Pl)/.II 'l'~I/.I2 ... (A, II)(Pl' ••• ,Pm) 

- 'l'tb2
'" (Aa' Ab - 1, ... ; lI)(p) 
.1 

(3.5) 

Remark: This identity is indicated pictorially in 
Fig. 1, where the double line denotes a scalar particle, 
and the dotted line an external momentum (no longer 
particularly a photon). If in (3.5) we set Al = 1 for all 1, 
and use Lemma 3.1, we obtain 

(P ) T./.II·" ( )(P) - - T.1'2·" ( )( ) + T.P2·" ( )( ) 1 /.II G II - Gb,l II P Ga,l II P (3.6) 

(see Fig.2). But (3.6) is precisely the relation needed to 
establish Ward identities (after inserting an external 
photon vertex into a diagram in all possible ways). Thus 
there remains only to prove Theorem 3. 2 for noninteger 
II. 

We wish to apply Carlson's theorem lO.ll to a suitable 
function; to avoid complicated analytic continuations we 
work in a region of (A, II) space in which there is no ultra
violet divergence. (It is here that we use critically the 
A regularization.) The necessary estimate comes from 

Lemma 3.3: Let G be an arbitrary Feynman graph, 
'l': (A, II, 5) the coefficient of some tensor form in the 
Feynman amplitude for G, and mo the minimal mass 
occurring in G. Then there exist positive constants a, b, 
k such that for lSi) < a and ReAl > ~ Rev> b, 

(
m2)VG 

IfG'l(A, V)r(IIG)-l T 'l'.(A, II, s) I 

(2EL IIIG I) 
:s K exp , (3.7) mg 

Proof: According to (1. 8) the function to be esti
mated is a sum of terms of the form 

x E(tfv/2-iX-vG +i G, 

where 

x = [(F(t..!!l + :6(m 2 - iE){3 )~J 
E(t) I I I m5 ' 

with P a polynomial and j H,j fixed positive integers. 
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Take b= max{jH,j} + 1 (H = G is included). Then 
IIIG - il-l:s 1,fpr i:SjG;using (1. 2), RellH 2: Rell/2 > 
jH + 1, so I t;H-JH-1 I :s l;and,sinceE(t) 2: 1, IE(t)-v/2-il 
< 1. The polynomial II dependence is dominated by the 
exponential in (3.7). Finally, for a sufficiently small, 
ReX> 1 (since {31 2: 0 and (31o = 1 for some lo) and 

ImX:s 2LE/m5' Hence 

02: argX 2: tan- 1 
(- !Et) 2: - ~~L, 

and 

IX-(vG-i)G I = Ixl ia exp(- RellG InlXI + ImvG argX) 

:s K' exp(2EL IIIG I/mg). 

Inserting these estimates into (3.8) yields (3.7) 
immediately. 

Proof of Theorem 3.2: Let the coefficient of some 
tensor form in (3.5) (with 10 dependence added) be 
g .(A, II, s); we wish to show 

g .(A, II, s) = O. (3.9) 

Fixing real numbers 11 1, with 111 > 1;2' and setting Al = 
11111, we have IIG = {311 with (3 = (3(rl) > 1. For 10 sufficiently 
small and I sil < a, we may by Lemma 3.5 apply Carl
son's theorem to 

to find that h(v) = O. Since g € is analytiC in A and real 
analytiC in s, (3.9) follows for all (A, s); the 10 -) 0 limit 
gives (3.5). 

APPENDIX A: THE BPH CR OPERATION WITH 
COMPLEX-DIMENSIONAL REGULARIZATION 

Our purpose is to sketch the proof of Lemma 2.6. We 
wish to use, with as little additional machinery as 
possible, the convergence estimates which Hepp9 has 
given for the CR operation. Complications arise because 
Hepp's methods rely heavily on the product structure of 
the regularized Feynman amplitude, a structure which is 
destroyed by the complex-dimensional regularization. 

We first rewrite the CR' operation in terms of the CR 
operation (which involves no finite renormalization) for 
generalized graphs: 

CR''l'(A, II) = :6 CRT.Q oc (A, II), 
Q ' 

(A1) 

where the sum is over all partitions Q of { V 1> ••• , V m} 
and'l'Q,x is 1efined as in (1. 7), but starting from the 
vertex parts X of (2.4). The usual proof12 of (A1) does 
not involve the product structure of 'l', but only the 
multilinearily in the vertex parts of the amplitude for a 
generalized graph; this continues to hold for complex
dimensional regularization. It therefore suffices to prove 

Lemma A1: For any finite vertex parts X(A, II), the 
amplitude 

CR'l'Q,i (A, II) (A2) 

is analytic at (10 ,4). 

Proof: For simplicity we discuss only the partition 
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Q = {{ V1}, ••• , {vmH. Hepp (Lemma 3.1 of Ref. 9) 
gives a representation of (A2) which extends immediately 
to n dimensions and the inclusion of A regularization: 

CR1'(A, n) = 2: 2: 5'Jf(A, n). (A3) 
" T 

Here 2:" runs over permutations 1T of £, and 2:T over 
certain "trees"; 5'lJ. is the Feynman amplitude for the 
tree T integrated over the region!O" = {a I al,,(l) :s ••• 

:s a
l 

}. Moreover,5'f is shown to be given a Feynman-
,,(L) 

like integral; following through the proof, we find that the 
A n dependence enters in four ways: an overall factor 
j(A, n)r(vG - jG)-1, as in (1. 8); possible polynomial n-

AZ-1 dependenc e (from gil II = n); factors a I in the integrand, 
and a replacement of Hepp's DI' = fl Dz2 

IEf,(I')-m 

by fl DI-n/2. Thus we may define 5'f(A, v) for 
IEf,(I')-m 

noninteger v; (A3) for general v now follows from 
Carlson's theorem (the argument is similar to those of 
Sec.3). Finally, the estimates given by Hepp in Lemma 
3.4 show that 5'Jf(A, v) is analytic at (Ao, 4). 

APPENDIX B: SYMANZIK RULES FOR 
GENERALIZED GRAPHS 

In Ref. 7 (see also Ref. 13) we have given "Symanzik" 
rules for arbitrary Feynman graphs, which allow the a
space Feynman integral to be written down directly. We 
here record the corresponding rules for generalized 
graphs. 

Thus let G be a Feynman graph as in Sec. 1, with 
propagators 

(Bl) 

where ZI is a polynomial. Let Q be a partition of {V l' ' 
••• , Vm} into generalized vertices Uj = {Vi'l' .•• , Vim(;)}, 
i = 1, ... ,M, and (J the corresponding contracted graph. 
The incidence matrix for G is written 

\ 1, 
e}a = j- 1, 

{ 0, 

if Vii = Via 

if ~I = VIa 

otherWise, 

so that ef = 2:aela is the incidence matrix of G. Given 
vertex parts X(U j ) [(1. 5)], we wish to calculate 1'Q,S: as 
given by (1. 7). 

Writing 

ZI(P) = ZI (~ _O_)e jp 'UI I ' 
Z Ou l "1=0 

(Bl) becomes t:.l = lim, ... o+t:. I ,., where 

Similarly, 
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(B3) 

We insert (B2) and (B3) into (1. 7) and take the Fourier 
transform. It is most convenient to change integration 
variables to Y ill = XiII + sia' The Yi2,'" 'Yim(i) integra
tions are then done using the Ii functions; the remaining 
Gaussian integration is virtually identical with that 
encountered in calculating an amplitude for (J. Evaluat
ing this as in Ref. 7 (or Ref. 12) gives 

- I~ roo roo A -1 -n/2 
1'Q,x(A,n)=gQ(A,n)Ii\LJPia )J

o 
... Jo (flail daz)d(a) 

)( flD. - -- rrz - - exp i 2: r.r.--(1 0) (1 0) [ ( M Dt(a) 
• i OSia I i ottz i,j=1 • 1 d(a) 

+2:PiAa -I;[t~/4al + (m 2 -iE)al ])] I _ -0' (B4) 
I s-u-

tl = UI - 2: elaS ja , 
i,a 

r i = qi + :6 alleft l 
I 

m(i) 

qj = :6 Pia, 
a=1 

and d(a),Di~(a) are the Symanzik functions for 7 G: 

d(a)=2: fl a lt 
T I ¢.T 

Dj1 =:6 fl al ; 
T2 I¢.T2 

the sums are respectively over all trees in G and over 
all 2-trees in G which separate Uk from Ui and Uj • 

k E {1, ..• ,M} is arbitrary. 

Now reca1l12 the following definition: Given a set of 
CJuantities {xj} and associated pairwise contractions 
{.K;Xj}, the T product of a monomial in X is defined by 
summing over all contractions, preCisely as in Wick's 
theorem for a T product; the r product is extended to 
polynomials in X by linearity. If we evaluate the u, S 

derivatives in (B4) and set u = s = 0, the integrand will 
contain a factor (see Ref. 12) 

r[f1 ZI(XI)fl Dj(Yia )], 

where 

XI = ~elDi1 %/a,d(a), 
',J 

(B5) 

(B6) 

(B7) 

and other contractions are calculated from (B6), (B7), 
and the relation XiiJill = 0. 

[The momenta XI have an intrinsic characterization. 
For fixed {aJ and {qj}, let {kq IE £(C,)} be arbitrary 
n-vectors satisfying momentum conservation in G. kl= 
XI is then a stationary point for the function I; a

l
(k l )2; 
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p 
e. = 0 
Itt 

FIG. 3. Incidence of paths on generalized vertices. 

Yia is the total momentum flowing out of Via in this 
momentum configuration. See Ref. 5, Sec. 4. 2.J 

More explicit Symanzik rules depend on the idea of 
incidence of an oriented path or circuit P in {'j on lines of 
{'j and on vertices of G. For IE £(G), 

l 
1, 

e{ = 0, 

-1, 

if I E P, and the orientations of 1 
and P coincide, 

if I ¢. P, 

otherwise. 

For a vertex Via, e~ = L)l eta et, Le., 

l
' 1, 

eta = - 1, 

0, 

if precisely one line of P is incident on 
Via, and P is oriented into Via, 

if one line of P is incident, oriented out, 

otherwise. 

See Fig. 3. For each tree T of ('j let PkL(T) be the path in 
T joining Uk to Uj , oriented from Uk to Vj • Then 

Xl = d(aflL;L; ePk/
T>( IT al) %, (B8) 

T j 'lfT 

Y ia = Pia - d(afl~ 1 ei~k/T) C~T a l ) qj (B9) 

(the result is independent of k). Let T* denote a set of 
M lines in ('j containing precisely one circuit C(T*), 

J. Math. Phys., Vol. 15, No.1, January 1974 

which is given an arbitrary orientation. Then 

'x6{t' = d(atl L; ( IT a .. ) eC(T*)eC.(T*~ , 
jJ ~ T* 1"'£ T* I I I jUI 

6 

(BI0) 

(Bll) 

'Y.:"Y - d(",)-l" (IT ) C(T*) C(T*) iajJ jb~ - ... L.J al eia ejb ~jl •• 
T* l,fT* 

(B12) 

(B8)-(B12) are the desired rules. 

The final form of (B4) is thus 

i'Q.:r (A, n) = gQ(A, n)o(L; Pia) 1000 

••• 1000 

(IT a~l-l dal) 

X dc(a)-nI2 T [IT Di (Yia)IT ZI(XI)] 

X exp[i~c(a, s)/da(a) - ~ (m1
2 

- iE)a l) J. (B13) 

At this point the variable scalings corresponding to s 
families in G may be introduced. The result is of the 
form (1. 8). 
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