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Abstract. A direct proof is given that analytic renormalization has an additive structure
and hence may be implemented by counterterms in the Lagrangian.

§ 1. Introduction

Of the various types of renormalization in perturbative quantum
field theory we will here accept as basic the additive approach of Bogo-
liubov [1]. In this method formally infinite quantities are subtracted
from a divergent Feynman amplitude to produce a finite renormalized
result. Physics enters because these subtractions may be implemented
in the field theory by inserting counterterms into the interaction La-
grangian; the counterterms are then related to renormalizations of mass,
charge, etc.

The particular implementation of the additive aproach given by
Bogoliubov has two difficulties: the recursive definition of the renormali-
zed amplitudes makes them difficult to compute, and the proof that the
result is finite is very complicated (see [1-3]). Analytic renormalization
([4, 5]) removes these difficulties, to a large extent, by giving a simple
prescription which obviously yields a finite result. On the other hand,
to establish the connection with physics (specifically, to show that ana-
lytic renormalization is equivalent to additive renormalization) it was
necessary in [4, 5] to use the recursive definition as a starting point.
In the present paper we avoid this problem and show directly that ana-
lytic renormalization may be implemented by counterterms in the
Lagrangian.

Some work related to these goals has previously appeared. In [6]
Westwater gives a definition of analytic renormalization which he shows
to be implementable by counterterms (and to be equivalent to the de-
finition of [4, 5]). His definition is not recursive, but, like the Bogoliubov
prescription, does involve modifying the integral by modification of
(i.e., subtractions from) the integrand. The present paper is more in the
spirit of [4, 5] the counterterms, like the renormalized amplitude itself,
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are obtained from well defined operators on a space of meromorphic
functions. In [7], Hepp gives an axiomatic formulation of renormali-
zation and shows easily that analytic renormalization satisfies the axioms.
However, his proof that the axioms may also be implemented by an
additive procedure rests on the usual recursively defined counterterms.
It is hoped that the present paper may provide an easier ascent of this
^Aiquille Verte".

In § 2 we review briefly the basic results of the theory of analytic
renormalization (following the notation of [5]) and the formulation of
additive renormalization which will be convenient here. In § 3 we study
a natural decomposition of meromorphic functions in a certain class,
and in § 4 show that on the functions of physical interest this corresponds
to the counterterms of additive renormalization. We do not discuss the
question of finite renormalization, which is thoroughly dealt with in [7,8].

§ 2. Review

We recall the following terminology. A Feynman graph G is a graph
(with vertices F l5 ... Vm and set of lines j? = J^(G)), to each line t of
which there is associated a propagator Δ€ e ^'(IR4) whose Fourier trans-
form has the form

Here Zf is a polynomial of degree r^ and me > 0 is the mass associated
with the line. For our purposes all vertices of G are considered to be
external. The superficial divergence of G is

A subgraph H c G is again a Feynman graph in an obvious way.
The Feynman graph G is irreducible if it is connected and cannot be

disconnected by removing a single line or vertex. A singularity family
(S'famϊly) $ for G is a collection of irreducible subgraphs of G such
that (a) if H, H' e «, then H D ff , H'D H, or JS?(H)n JS?(fΓ) = 0, and (b)
if Hi, ... Hk e £ satisfy Jδf (H^nJSf (#,) = 0 for any ΐj, then H = Hίu...^jHk

is not irreducible. (We note that this terminology differs slightly from
that of [5], in which an s-family was required to be a maximal family
satisfying (a) and (b).)

Now let GO be a connected Feynman graph with n vertices. For
each line t of G0 we introduce a complex parameter λ€ and a new pro-
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pagator

Λ,(λ,) (p) = Z,(p) (p2 -m2

The generalized Feynman amplitude for G0 is the distribution
«^"GO W E 5 '̂ OR4"), depending meromorphicly on A, which for sufficiently
large Re/l^ is given by

^GoW= Π

with 1̂ , F/ίf the initial and final vertices of f in G0. Thus ^Go(λ) is
formally equal to the usual Feynman amplitude for λ = A0 = (l, 1, ... 1).
The analytic structure of ^~Go(λ) may be described as follows: there is
a (nonunique) decomposition

the sum taken over all maximal s-families for G0, such that ^Go(λ9 <
is regular except for simple poles on the varieties

μ(G)" '- (2.2)

with G e δ and fc a non-negative integer.
In particular, if the superficial divergence of any subgraph is positive,

^~Go with be singular at λ0. The extraction of an appropriate finite part
at this singular point is called analytic renormalization. This is done
using a generalized evaluator:

Definition 2.3. Let j(λ) = (λ€- 1) , the product taken over all

non-empty JΓeJ^. For ε>0, define C7ε={λ||λ,-l|<e, ^e^}, and
3/ε={f(λ)\f(λ)j(λ) is analytic in C7J. j/ε is topologized by uniform
convergence, on compact subsets of UB9 of the products j (λ) /(A), /e«fi/ e.
Let j2/ = (J j^ε. Then a map H^\ £#->(C is a generalized evaluator if the

ε>0

following conditions are satisfied :

(Wl) Ίir is linear;
(W2) if /e j^ is analytic at J10, then /#7 = /(A0);
(W 3) for any ε > 0, ̂  is continuous on j/ε

(W 4) if s is any permutation of ̂ , and if for / G jtf, fs 6 <$/ is defined by

(W5) if / l 9/ 2ej/ depend only on {^IjfeJSfJ and {^eJS?2}, re-
spectively, with JS?i n JSf 2 = 0, then iT (/t /2) - iT/Ί ιT/2 .

Now if T(A) is a distribution such that T(λ) (ψ) is in j/, for any test
function φ, we may define a distribution TFT by
This justifies
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Definition 2.4. For any generalized evaluator if, the distribution
^^0e^'(lR4")is called an analytically renormalized Feynman ampli-
tude for GO .

For a discussion of additive renormalization we must recall some
additional terminology. A generalized vertex is a non-empty subset
{Vί,... Vή] of the vertices of G0; the graph G(V^ ...J^) is the subgraph
of GO consisting of all lines joining any pair of vertices in the subset.
A vertex part for {F/,... V^} is a distribution 9C(λ\ V [ , . . . F )̂, depending
only on {λf\f e &(G(V(,... *£))}, and having the form

1, if m = 1
0, if G(F/, . . . f£) i snotIPI;

> i , . . . pf

m) otherwise.

Here P(λ\ p'l5 ... p'm) is a polynomial in the p\ of degree at most
μ(G(V^ ...Vή))', we will assume that for fixed p , Pesέ. An IPI graph
is one which is connected and cannot be disconnected by the removal
of one line.

Now suppose that we have assigned a vertex part 9£ to each generalized
vertex. Let P be a partition of [Vl9... Vn} into k generalized vertices
{^Pι> ••• ^Pm(i)}' z = = l ' ••• ^ We may define the amplitude ^p^(λ) to be
given, for ReΛ^ sufficiently large, by

Ptff= , x / -
^eJSf" =l

and for other values of A by analytic continuation.

(W JS?' = JSf- |J^(ί?Wfι,...))
\ i=l

Definition 2.5. A distribution Γe '̂(IR4") is an additively renormalized
Feynman amplitude for G0 if there exists a set of vertex parts 3?(λ)
such that

Γ=l im Σ^p,^W
•Λ^ΛQ p

the sum taken over all partitions of {F1?... Vn}.
In Section 4 we will show that every analytically renormalized ampli-

tude for GO is an additively renormalized amplitude. We note that, once
the existence of the vertex part $£ has been established, we may in the
additive formalism set all λ€ equal to some complex variable λ\ this is
more convenient for the introduction of counterterms in the Lagrangian
(see [6]).
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§ 3. Analytic Decomposition

Take M>0, and let Ω denote the index set {!,... M}. A family $
of non-empty subsets of Ω is called an s-family if (a) χ1? χ2 e $ implies
that either χ ι C χ 2 , χ 2 C X ι > or Xι^X2 = 0, and (b) for any χ e <?,

%φ U x' (3-1)
*'ε<f,X'£;f

Let δ be an s-family. We let δ = (J χ. δ is discrete if all elements of <?

are pairwise disjoint. For any J^C^, δ(&*} is the subfamily of δ con-
sisting of all sets which are proper subsets of some element of 2F\ for
χe δ we write <ί(χ), etc., instead of <?({/}).

We will consider functions defined on Cβ( = (CM). For χ C Ώ there
is a natural decomposition <Cβ = Cχ 0 (Cβ ~ χ, and we write correspondingly
λ = λχ®λΩ~χ for any λeCβ. As usual, A0eCΩ is the point (1, ... 1). For
χCΩ we write Λ(χ)= Σ(λί~ !); for anY s-family <£,Λ(<?) = ΠΛ(χ).

We now introduce a new class of operators closely related to gener-
alized evaluators.

Definition 3.2. Let sf, stB be as in Def. 2.3 (with JS? replaced by Ω).
J* C ̂  is the subspace of all functions / having a (not necessarily unique)
decomposition

(3.3)

the sum taken over all s-families <?, with Λ ( $ ) f ( λ , $ ) analytic at λQ.
&0C& consists of all / which are analytic at A0. An analytic evaluator
is a map TΓ: J*-» J*0 such that:

(VI) TT is linear;
(V2) i f/is in^ 0 , lΓ/ = /;
(V 3) for any ε > 0, i/~ is continuous on J*n j/ε;
(V 4) if 5 is any permutation on Ω, τΓ/s = (i^f)s

(V 5) if /! , /2 e « depend on disjoint sets of λ's, then iΓ (/t /2) - ̂  τT/2

(V6) if /e J1 is independent of λi9 so is i^f.

Remark 3.4. (a) If we compare Definitions 2.3 and 3.2 we see that the
significant difference between analytic and generalized evaluators lies
in conditions (V 2) and (W 2). If iΓ is any analytic evaluator, the operator
'>T:# -*C defined by ^f = ̂ f(λ0) satisfies (W1)-(W5) and is thus,
aside from its smaller domain of definition, a generalized evaluator.
We will prove a converse of this statement in the Appendix.

(b) An example of an analytic evaluator is easily given. For /e J*n j/ε,
choose 0<R1<"'<Rn<ε to satisfy jR^> 2] RJ9 and let Cf be the
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contour z — l\ = Rt oriented counterclockwise. Then for \λi—l\<R1

define

n/w=^pz ί *μι... ί dμM

 ί(μl ,
1V1 - s c s (i) cs(M) Ψί~Λι)"Λ^M ΛM)

the sum running over all permutations s of Ω.
An analytic evaluator if may be used to remove the singularity of

a function which is associated with the λ variables in a subset χ C Ω, by
treating the other variables like constants when we apply if. This is
formalized in

Then ifχ : Λ -> J> is defined by

-̂  /is regular at (generic) points of [λ\ λi = 1, i e χ} ̂  satisfies (V 1)-(V 6)
with slight modifications: in (V4) we must assume s(χ) = γ, while in
(V 2) we need only assume / regular on {λ\λt = 1, ί E χ}. Note that ifΩ = if,
and that τΓ0 is the identity.

In the remainder of this section we deal with some fixed analytic
evaluator if.

Lemma 3.6. Suppose χCΩ, and Ψ ι , . » Ψ k C χ a?e pairwise disjoint
subsets of χ. Suppose fe& is such that / is not singular on any {A (χ') = 0}
with χ' Cχ unless χ' c ψί9 far some i. Then

and the operators ifψ. commute on /.

Proof. The proof is representative of methods used to deal with
analytic evaluators. Consider the function

0(λ)=Π Π A(ψΐ)f(λ).
ί= 1 0 ΦφίC ψi

If μ E CM is a generic point with μi = 1 for all i e χ, 0 is regular at μ. By
expanding g in a Taylor series at μ we may write g, and hence /, as the
sum of a series, each term of which is the product of factors depending
on λ^λχ-^ and λΩ~χ. If / is actually such a product, (3.7) follows
immediately from (V 5) and (V 6); for general / it follows from the series
expansion and the continuity property (V 3).

Lemma 3.8. Let $ be a fixed s-family. Then for any fε&$, with A (<?) /

the sum running over all discrete subfamilies 3) C S.
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Proof. The proof is by straight forward rearrangement of terms in
(3.9). For any 9>cδ, we let <ί0(^)c^ consist of all maximal elements
of $(&}. If we expand the product over χ, the right hand side of (3.9)
becomes

Σ Σ(-i)'^</. (3-10)
2 j^c^

where we have set

(&-&) (3.11)

and used Lemma 3.6. 2' is a discrete subset of $ .
Now for any fixed (discrete) ®'cδ, let Q)\= {χε<ί |<T°(χ) c ®',

<f°(χ)Φ0}, and ®/

2 = {χe<f|ί°(χ) = 0, χ£0'u<f(®')}. Then there is a
biunique correspondence between pairs (̂ , J^) occurring in (3.10) and
pairs (β',S^ with ^C^u^' given bY (3 H) and> in the opposite
direction, by

Thus (3.10) may be rewritten

where Σ" runs over those discrete 3? C <? such that ®i = 0 '2 = 0. But
the only such 2' consists precisely of all maximal elements of δ. (3.9)
now follows from Lemma 3.6.

Corollary 3.12. For feόS, let f = ̂ f(-,δ) be a decomposition as in
(3.3). Then $

^f=Σ Σ Π (n-^oF))/( ^)> (3.13)
χcΩ (S,@) ψe®

where the second sum is over all s-families $ such that for some discrete
®C^, 2 = χ.

Proof. Immediate.
This result motivates the basic
Definition 3.14. For any χCΩ, we define «5^(χ): J*->^ by

^ω/= Σ Π(^-^))/M); (3-15)
(<?,^) φe^

where / = Σ f( 9 δ) as in (33), and again the sum is over all δ such that,
for some discrete ^C^, @ = χ. £f(χ)f is called the singular part o f/
associated with χ. We note that 5^(0) is the identity (since, if χ = 0, all
s-families δ appear in (3.15), ® = 0 in each case, and the empty product
is by convention 1).
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Lemma 3.16. ̂ (χ) is well defined.

Proof. By Lemma 3.6, no ambiguity arises from our failure to specify
the order of y factors in the product in (3.15). There remains the problem
that the decomposition (3.3) of / is not unique. Suppose then that we
have two such decompositions

(3.17)

We denote the corresponding values of (3.15) by &Ί(χ)f and
respectively, and wish to show that

(3-18)

Let C C Ω be the smallest set such that f, /i( , δ\ and /2( , g) depend
only on the variables λζ. We prove (3.18) by induction on |£|; the case
\ζ\ = M is the desired conclusion. (Note that even if |£| <M, the sums in
(3.17) may still run over all s-families.) As a preliminary remark we observe
that <f.(χ)f = Q unless χcζ (i = l,2). This is because, if χ-ζΦ0, then
for any (g, 9) in (3.15) there will be a ψ e 2 with ψ - ζ Φ 0, and then,
by Lemma 3.6, (i^ψ — ̂ j^))/^-, < )̂ = 0. We may therefore assume, in
what follows, that χ C ζ.

If Id = 0, i.e., C = 0, we must show that ̂  (0) / = ̂  (0) /; this follows
from the observation above that ^(0) = 1. We now consider a general £.
If χξC, (3.18) follows from the induction assumption. For from (3.16)
(in the notation of Definition 3.5),

for any Aζ~χ. From (3.15) and Definition 3.5,

But by the induction assumption, ^iW/^-κ^^WΛ?-^? and this
proves (3.18). Finally, if χ = (, (3.18) follows from the χ^ζ case and
Corollary 3.12, since (3.13) may be written in this case

This completes the induction step, and proves Lemma 3.16.
Remark 3.19. For any χCΩ, the operator &*(χ) satisfies
(a)_«9ί>(χ)/ = 0 if, for some decomposition (3.3) of f,f (-,$') = Q when-

ever 2 = χ for some 2 C δ\
(b) if / = /ι/2, with / f6^ depending only on Aχί, and

then
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Proof, (a) is immediate from Definition 3.14; (b) similarly (using
Lemma 3.6) once we observe that each/; will have a decomposition (3.3)
in which each /(•, S) depends only on λχi.

The main result of this section now follows immediately from (3.13).

Theorem 3.20. For any analytic evaluator i^9

^=Σ ^ω (3.21)
XCΩ

We remark that (3.21) expresses the "regular part of/", i^f, in terms
of / itself together with subtractions of various singular parts (recall
5^(0) = !). This is the natural form for renormalization theory. Of
course, by transposing terms, (3.22) may be viewed as a decomposition
of / into various regular and singular parts.

§ 4. Renormalization

We now return to the study of the Feynman amplitude ^Γ

Go. Our
complex variables are labelled by ££ = j£? (G0), and, as in § 2, an s-family
is a family of irreducible subgraphs of G0. The lines of these subgraphs
form an s-family in JS? in the sense of § 3. We adapt the notation and speak
of ίf(H), etc., rather than &(&(H)\ for H any subgraph of G0. We will
show that (3.21), applied to &~Go, corresponds to an additive renormali-
zation.

Definition 4.1. Suppose that {F/, ... V^} is a generalized vertex of G0,
with G - G(V^ . . . )£)• An IPI subgraph H of G0 is subordinate to G(H~< G)
if H also has vertices J '̂, ... V^ (we include the possibility H = G). Then

arμ fί',. ..)£)= Σ ^(#)^G
H<G

Lemma 4.2. %(λ\ F/, ... J£) is a vertex part for {F/, ... P£}.

Proof. If G is not IPI, #=0, since there exists no H with #-<G.
Suppose then that G is IPI, with irreducible components G 1 ? . . . G f c .
We wish to show that for any H-<G and any maximal s-family δ of G,
£f(H) 2ΓG(>, $} is, in momentum space, a factor δ(Σpf

i) times a polynomial
in the p( of degree ^ μ(G).

We use the explicit form of ^G(λ, δ)\ from [5],

the sum running over all maps σ\$^<£(G) such that, for any
and H'e£(H), σ(H)eJ2?(fl) and σ(H)φ^(H'\ 3TG(λ,<ί,σ) is itself a
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sum of terms of the form

m * Σίφ-ί Π''--1^ Π P-
~*° = φσ(£) j , * *,

Γ m 1

£ p.A^ήpj- £ (mj-iε)B,(β9 ί) .
L i , j = l

The integration region D is {0^ίG.^oo, 0^ίH^l for f ,
Q ζβt^ 1}. F, Af j, and £^ are continuous functions in D, with F a poly-
nomial in the p[ whose degree we denote r. For HeS,

vH = Λ(H)-kH, (4.5)

where kH is an integer. If H-<G has irreducible components Hl7 ... Hk,
then

(4.6)
ι=l

in addition,
^O8'ί)k = o f i = ι , . . . k = 0. (4.7)

This last result is not stated explicitly in [5] but follows easily from, e.g.,
(3.14) of that work.

The integral (4.4) actually converges only for v#>0, but may be
treated at the point λ0 by considering each factor ί^f"1 as a distribution
and using the standard analytic continuation of that distribution [9].
(This method of analytic continuation of (4.4) is that of Westwater ([6]),
not that of [5].) ί̂ f ~ x is, from (4.5), analytic at λ0 unless kH ̂  0, in which
case it has near λ0 the form

+(regular part). (4.8)

Now take #0<G; we wish to apply «5^(H0) to (4.4). By Remark 3.19
(a), this gives 0 unless δ contains all irreducible components {H^ , . . . Hk}
of H0. Suppose that it does. If we rewrite each factor ί^"1 in (4.4)
according to (4.8), Remark 3.19 (a) implies that every term in the resulting
sum is annihilated by ^(H0), except the one involving Πf=1δ

(kHi)(tH).
But, from (4.6) and (4.7), this term is already a polynomial in the p of
degree ^μ(G), multiplied by δ(Σp'^. Since ^(HQ] will preserve this
form, the lemma is proved.

Now let H be a subgraph of G0 which is the union of its irreducible
components (this is not a trivial restriction on H; it is equivalent to
requiring that each connected component of H be I PI). Let Hl9 ... Hp

be the connected components of H, and let Ht have vertices Jfl9 ... V m(i}.
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Then we say that H is subordinate to the partition P (H -< P) of { Vί , . . . Vm}
into subsets {V^ ... V^}, i = 1, ... p, and {Vj},, Vjφ{V^ ... 7;m(p)}.

Lemma 4.9. Wί/z ί/ze above notation, and with 2£ given by Def. 4.1,

(λ). (4.10)

Proof. Write Gt = G(J<i,... VJm(i)); clearly Ή^G, for all i. According
to Definitions 3.5 and 3.14, ^(H)^Go is calculated by holding all λ^

p
constant for { e 5£' = 5£ — \J ^f(Gt). We may choose these constants to

i
have large real part, in which case ^Go is a product

Then from Remark 3.19 (b),

Summing over #-<P gives (4.10).
We note that if some connected component of H is not IPI, then

^(H)^Go = 0, by Remark 3.19 (a).
We may now state the main theorem.

Theorem 4.11. Any analytic renormalizatίon is an additive renormali-
zation.

Proof. The analytically renormalized amplitude is i^^~Go, for some
generalized evaluator Hf. By Theorem A.5 (or by Remark 3.4 (b), if
W is the standard generalized evaluator) there exists an analytic evaluator
iT with nrf = (irf) (A0). Construct vertex parts X from ir using Defini-
tion 4.1. Then,

where we have use Theorem 3.20 and Lemma 4.9. This completes the
proof.

Appendix

In this appendix we state and prove the converse of the relation
between generalized and analytic evaluators noted in Remark 3.4 (a).
The proof is quite similar to standard proofs of the equivalence of

3 Commun. math. Phys., Vol. 23
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analytic renormalization with other schemes (see, e.g., [5, 6, 8]). We
use the notation of § 3.

Lemma A.I. Take χCΩ and f e £β. Suppose that the variety {A (ψ) = 0}
is a singularity of £f (χ) f. Then necessarily either (i) ψCχ,or (ii) ψnχ = 0.

_ Proof. Let /(•, δ) be a term in the decomposition (3.3) of /, with
@ = χ for some discrete ^C^. Any ζ e t f satisfies either (a) ζcχ, or (b)

3F, for some J^C^, and (Φ^ Let

(A.2)

For each ζ e <? of type (b) above, write

1 _ 1 Λ(ψ)

and insert (A. 3) into (A.2). When ί^(χ) is applied to the result, Remark
3.19 (a) shows that all terms except the first are annihilated. Thus (using
Remark 3.19 (b))

π
Definition 3.14 immediately shows that, aside from the Λ(ζ — J^) singu-
larities explicitly displayed, (A.4) can contain only singularities
{A(φ) = 0}, \p C χ. This completes the proof.

We now give the main theorem.

Theorem A.5. Let W be a generalized evaluator. Then there exists
an analytic evaluator if such that, for fetfS, ^ / = ̂  /(λ0)

Proof. We use the analytic evaluator ^0 constructed explicitly in
Remark 3.4 (b), and denote singular parts defined with it by 5 0̂. We also
note triat we may define operators ifχ, for χ C β, exactly as we defined
operators i^χ in Definition 3.5. For example, i^χf is independent of
λχ, for any /eJL

We now define if by

M

^=Σ Σ (-lyn.o-u^^^oUcO^-.-^^oCCi). (A.6)

Here the sum is over all (ordered) /c-tuples χι, . . .χ f c of non-empty,
pairwise disjoint subsets of Ω. The k = 0 term of (A.6) is understood to
be simply f0. We claim that if is an analytic evaluator.

First note that, for fe&,iff'is analytic at λ0. This is because (V 6)
(applied to if^ shows that ^k^0(z/c) ••• «^o(Xι)/ i§ independent of
λuXl

9 and the factor ^0,Ω-uχi then yields a regular function. Also, f
clearly satisfies (V 1)— (V 4) and (V 6), so there remains to verify only
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(V 5). Suppose then that /', /" e & depend only on λψ\ λψ" respectively,
with φ'nt//' - 0. We apply ΊT to/7 /". By Remark 3.19 (b) and Lemma 3.6
(which applies to *W just as to f"~0),

M

nfr)=Σ Σ (-^{nx-u^^k ^efi)/'}
fc=0 *1'-*" (A.7)

*
where ^ = ̂ nip\ χ;.' = χ.nt//'. Now let (£i, ... Q and (Cϊ, ... Q) be the
sequences (χ'l5 ... χf

k) and (χ' [, ... χ£) with all occurrences of the empty
set deleted. Since &>(&) = % - 1,

n^-u Λ ^ofe)/'-^^ (A.8)

and similarly for /" (again, the right hand side of (A.8) is Ϋ"0tψ. /' when
p = 0, i.e., when χ't = 0 for all i). We wish to rewrite (A.7) as a sum over
p, q, ζ , and £'{. A fixed (ζ'l9 ... ζ^) and (£'{, ... ζ^) may come from many
different (χ1? ... χk) terms in (A.7), but (because χ/Φθ) it is easy to see
that k must satisfy p + q^k^ max(jp, g), and that, for each such fe, there

are , 1 such terms. Using

the desired factorization follows immediately.
Eq. (A.9) itself may be derived by considering the coefficient of xpyq

in the equation

obtained by summing first over q, then p, then fe.
There remains only to verify that i^ f(λ0) = i^f. We expand each

"Γ0 operator in (A.6) according to Theorem 3.20. After rearrangement,
(A.6) becomes

^ = ̂ o(0)+ Σ Σ (-)k+^i-^J^ofe)^k-1...^1^o(%i);
*=1 X ι , Xk

(A.10)

χ1? ...χk are as in (A.6). We apply ϋ^ to (A. 10). From Lemma 3.6 (applied
to iΓ) and Lemma A.I,

ir [(i - τrxfc) 5̂ 0 ω ̂ fc-, ^o (χi)]
= -rzkιr0_ UXi [(i - irj «̂ 0 ω τrΛ..... ̂ o (xi)],
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and this vanishes because ιTχk(l - ιTXk) = 0. Thus HT1T =
But since, for fe Jf, iT / is analytic at A0, TT i^f = τ^/(A0). This com-
pletes the proof.
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