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Abstract. The monodromy rings of Feynman integrals for one loop graphs with an
arbitrary number of lines are determined.

§ 1. Introduction

This paper is the second of a series whose general aims were outlined
in the introduction to the first paper [1]. In this paper we make a system-
atic study of the Feynman integral for a general one loop graph in an
arbitrary space-time dimension; we classify the possible paths of analytic
continuation, label the determinations of the function over a fixed base
point, and obtain explicit formulae for the action of analytic continuation
on the vector space spanned by these determinations.

A preliminary account of these investigations has been published [2].
The present account is self contained, but for the reader who is familiar
with [2], we proceed to give a brief comparison. In the present paper we
introduce the auxiliary complex parameters also used in [1] and [3].
This makes a technical difference in the construction of the representation
since, for general values of the parameters, the Cutkosky-Steinman
relations do not hold nevertheless, we are able to determine the repre-
sentation by exploiting more fully the consequences of the Picard-
Lefschetz theorem. Single loop integrals fall naturally into four classes
(see § 2). In [2] only case 3 (in which no second kind singularities appear,
and the invariants constructed from the external momenta are algebrai-
cally independent) was treated. Our present use of complex parameters
enables us to deal with four cases in a unified manner. Finally, we note
that the present paper includes some proofs which were omitted from [2].

We would like to call attention to two points which were raised in the
discussion following a talk given by one of us (T. R. [4]). First there is
the problem which arises in case 4 - that the scalar invariants of the
external momenta are algebraically dependent. We show in this paper
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how the formalism of [2] is adapted to deal with this case. Secondly there
is the question as to whether the success of our methods for the single
loop integrals depends on their special functional form (they are sums
of Spence functions). In our opinion the present calculations, and those
of [1], show that the key to the determination of the monodromy of a
Feynman integral is the determination of the fundamental group. The
fundamental groups of single loop graphs are particularly simple. It is
this simplicity (which is determined by the form of the Landau varieties),
rather than the functional form of the integrals, which is important.
This remark is illustrated by the fact that for general values of the
auxiliary parameters single loop integrals are not expressible in terms of
Spence functions.

In this paper (as in [1]) we consider all possible analytic continuations
i.e. we consider all the parameters which enter into the integrals, including
the internal and external masses, as complex variables. It would also be
of interest to examine the monodromy representation restricted to
analytic continuations along paths in which the internal masses are held
constant, or in which both internal and external masses are held constant.
Our results give a basis for such investigations but we do not actually
deal with this problem.

This paper presupposes the results of § 1 of [1]. We will use the
following set-theoretic notations. Let χ and ψ be any subsets of some
universe Ω. Then

a) 1 — Ψ = {χ I x G hx Φ ψ} ( n o t e w e do not assume xp c χ);
b) χAψ = (χ — ψ)v(ψ — χ) = the symmetric difference of χ and ψ;
c) |χ| = the number of elements in χ;
d)χ' = Ω-χ;

e ) δψcχ \θ, otherwise.

We will sometimes ignore the distinction between an element xeΩ
and the one-element set {x}.

§ 2. Definition of the Integrals

We denote by GN the single loop graph with N ^ 2 vertices. The
internal and external lines of GN we label as in Fig. 1. The dimension of
space-time will be given an arbitrary value m ̂  2. For the ith external
line we are given a momentum vector kiti+1 elRm, these satisfy the con-
servation condition

ΣΛH-I=0 (2.1)
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In view of (2.1), we may introduce vectors k} e lRm, j = l,...9N9 such that
kiJ+ί =ki — ki+i. (In these equations, it is understood that kN>N+1 and
kN+x are to be replaced by kN t and kx respectively.) Then we will study the
integral

F(ht+i>mj)= f *"k Π [(fc + fcZ-m?]"1, (2.2)
R w j=ί

where rπj e 1R1 is the mass of the jth internal line, and

for any p e IRm. For N ^ m/2 this integral diverges and must be renormal-
ized (see 5.4). Otherwise it defines a function analytic for real values of
its arguments; this function may be extended to a (many-valued) function
in the complex domain, whose monodromy ring we wish to study. The
relation of this Euclidean integral to physically relevant quantities will
be discussed in 5.1.

It is convenient to write F in a parametric representation [5] which
displays its dependence on invariants. Up to unimportant factors,

= Γ(N-m/2) J

where

N

D(GC,A)= Σ

κN-r

Fig. 1. The single loop graph GN
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and

AH = mf,
Atj = Ajt = \ [mf + m) - (kj - kt)

2] .

For the moment we will consider F as a function of the N(N +1)/2
complex variables 4̂ί<7 . Note, however, that for N > m +1 these invariants
are not algebraically independent. It is then more convenient to study
(2.2) directly in momentum space; this problem will be taken up in § 6.

To obtain the singular locus L of F, we rewrite (2.3) as a projective
integral. Up to a sign,

F(A) = Γ(N-mβ) Jo

 δ[Σ^j D^Af-mβ^, (2.4)
i = 1~ . '.N

— oo < ctjsr + i < oo

where Nη is the fundamental projective form [6]

J V + l

ί = l

The singularities of (2.4) depend on whether {αN+1 = 0} is a zero or pole
of the integrand. We are thus led to distinguish four cases in our study
of (2.2):

1. iV^m/2. The integral (2.2) is divergent, as reflected by the pole
of the Γ-function in (2.4). This case will be handled by analytic renormali-
zation (5.4); however, the location of singularities is the same as case 2.

2. m/2<N<m. The factor ocN+i in (2.4) introduces second kind
singularities [5].

3. m^JV^m+1. There are no second kind singularities, and the
invariants Atj are independent.

4. JV>m + l. As remarked above, the integral in this case will be
studied, in momentum space, in § 6.

All the above cases may be obtained by suitable specialization of the
integral

In (2.5) P(x) is a fixed homogeneous polynomial of degree p in xx,..., xs+ί

lj(x), 1 ̂ j^r, is a fixed linear homogeneous polynomial in x; B(x) is
given by s + i

B(x)= £
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λj91 ^j ^ r, and μ are complex numbers satisfying

£ = 2μ; (2.6)
7 = 1

and 7 is an arbitrary cycle on which the integrand is single-valued. We
will study this general integral in § 3 and § 4 and apply our results to
the physical cases in § 5 and § 6.

As in our preceding paper [1] we consider Feynman amplitudes for
spin zero particles the results of § 3 and § 4 may also be applied to the
case in which the exchanged particles have non-zero spin. We note that
it is then possible to have amplitudes with second kind singularities for
which the invariants are algebraically dependent.

§ 3. The Fundamental Group ̂ ( i , s)

In this section and the following section we determine the mono-
dromy ring of the function H introduced at the end of § 2, considering H
as a function on the space w = <C(s+1)is+2)/2 of quadratic forms B. This
section is devoted to the study of the fundamental group of the comple-
ment of the singular variety of H. In § 4 we formulate the additional
conditions on the monodromy representation of this group derived from
a local analysis in the integration space, and use them to construct
explicitly the monodromy ring of H.

3.1. The Singular Variety M

We will suppose throughout that the linear forms /,- in (2.5) satisfy
the condition that any k ̂  s +1 of them are linearly independent. We
denote by Ω the set {1,..., r} and we use Greek letters to denote subsets
of Ω. For any χ C Ω, 0 :g \χ\ ^ s, write

Then the algebraically irreducible components of the singular variety
M of H are the varieties M(χ) defined by

M(χ) = {B\B(x)\l(χ) is a singular quadratic form}. (3.1.1)

The defining condition (3.1) may be expressed in terms of coordinates
as follows:

B 6 M(χ) iff the equation

dB
Σ τ ; ( β >x)τ^ = 0' f o r 1^*^

jeχ ϋXk

(3.1.2)
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have a solution x = x(B, χ) e Ψs. Here the τ7 are Lagrange multipliers.
The set of solutions x(B, χ) is called the pinch in the integration space
corresponding to B. These equations assume a particularly simple form
if we choose the coordinate system so that the lj(x)9jeχ, are the first |χ|
coordinate variables (which is possible in view of the condition imposed
at the beginning of this subsection).

δB = 0, (3.1.3)

The Eq. (3.1.3) have a solution iff the determinant of the symmetric
matrix B(χ) formed by the last s + 1 - \χ\ rows and columns of the co-
efficient matrix of B (in this coordinate system) vanishes. This gives us a
global equation for M(χ) which is therefore an algebraic variety of degree

s + i- |χ | .
We now consider the singular points of M = (J M(χ) as an algebraic

x
variety. Let B e M(χ) and choose coordinates in P s as in the preceding
paragraph. If B(χ) has nullity 1 the solution x(B,χ) of (3.1.3) is uniquely
determined by B and χ; in fact

We may define adj B(χ) in an arbitrary coordinate system as the matrix
of coefficients of the tangent variety to

= 0, /,(*) = 0, V,.eχ},

and write (3.1.4) in coordinate-free form

adj B(χ) = x(B9 χ)® x(B, χ). (3.1.5)

For the normal to M(χ) at B we obtain

Γ
= 2(adj B(χ))u

for |χ| + l g i , j ^

= 0 otherwise;
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or in coordinate-free form

d
, P ~ w = 2x(B, χ)® x(B, χ). (3.1.6)
oB

According to (3.1.6) B is a nonsingular point of M(χ). If B(χ) has nullity

5M(χ) Λ u

so that M(χ) is singular. However, a simple counting of conditions shows
that

M(χ, n) = {B\B{χ) has nullity ^ n}

has complex codimension n(n+ l)/2 in FK In particular M(χ, 2) has
codimension 3 (if it is non-empty).

Now suppose that for two distinct subsets χ, ψ of Ω

B e (M{χ) - M(χ, 2))n(M(V) - M(φ, 2)). (3.1.7)

Then either the points x(B9 χ), x(£, tp) are distinct and so by (3.1.6) M(χ)
and M(ψ) intersect transversely at B, or x(B, χ) = x(B, ψ) and by (3.1.6)
M(χ) and M(φ) have a common tangent at B. In the latter case, this
common point x = x(B, ψ) = x(β, χ) must satisfy the equations

dB

dxk

1 = 0, eχuφ,
(3.1.8)

= 0, kφχnψ,

where we haye used a coordinate system in which lj(y) = y^j e χ u φ .
These equations imply that BeM(ρ) for any χnipCρCχuip. Now if
the symmetric difference of χ and i/? contains at least two elements, the
Eqs. (3.1.8) imply at least 3 conditions on the coefficients Btj; thus the
set of such singular points has codimension ^ 3. Otherwise, i.e. if χ = tpu{i}
or ψ — χu{f}, the singular set has codimension 2 and there are precisely
two components of M tangent at B.

3.2. The Real Points of M

In this section we study the real part MR of M, that is, the points
of M for which the quadratic form B has real coefficients. Let SR C MR

be the set of all real singular points of M except for those which correspond
to a transverse intersection of regular components of M. The fundamental
group #(r, 5) will be described in terms of elementary loops around
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points of MR — SR;in this section we begin this description by labelling
the connected components of MR — SR.

The labelling we use refers to the pinch which generates the singular
point. For each B e M(χ) n [MR — SR~\ we define two r-dimensional vectors
given by

τj(B,χ),

(see 3.1.2), where we write Tj(B, χ) = 0 for j φ χ. Then the point B is labelled
by the signature

where

(3.2.1)

= {/eO|τ/B,χ)>0},

The sets QU ... ρ4 form a partition of Ω, with ρ1vρ2 = Ω — χ, ρ 3 u ρ 4 = χ
(for if lj[x(B, χ)] =0Jφ χ, or τ/β, χ) = 0J e χ, the point B must lie in SR).
The reason for displaying the signature in the form (3.2.1) will become
apparent when we examine the algebraic relations in ^(r, s). The freedom
to change projective coordinates by a factor means that we must identify
with (3.2.1) the signature obtained from it by interchanging ρx with ρ2

and ρ3 with ρ4.
Finally we label each point BeM(χ)n{MR — SR} by a pair (^q\

where 5^ is the signature of the point and q is the number of positive
eigenvalues of the matrix B(χ). Note that a point on the transverse inter-
section of M(χ) and M(ψ) will have separate labels corresponding to χ
and ψ. We define

M(^q) = {BeM(χ)n{MR-SR}\B has label (Sf,q)};

note that the set χ is determined by the signature Sf, specifically, χ = ρ3 u ρ 4

when Sf is given by (3.2.1).

Lemma 3.2.2. M(Sf, q) is pathwίse connected.

Proof. Let B, Bf be two points in M ( ^ q) C M(χ). We have to construct
a path from B to B' lying entirely in M ( ^ q). Choose coordinates such
that lj(x)-Xj for jeχ and denote as before by B(χ) the submatrix of B
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formed by the rows and columns whose indices are not in χ. Then for
BeM(6^q), B(χ) has one zero and q positive eigenvalues. We will
construct the path as the union of three segments.

1. Choose an orthogonal metric in the space <Cs+1~~|χ| of coordinates
Xpj φ χ. Denote by x(B, χ), x(B\ χ) the null vectors of B(χ\ B'(χ\ normal-
ized to unit length, and normalized in sign so that

Let x(t) = [(1 -ήx(B,χ) + tx(B\χ)]/||(l - t)x(B9χ) + tx{B\χ)|| for 0 ^ t ^ 1.
Then sgn lj(x(ή) is independent of t and there is an orthogonal trans-
formation O(t)eO+(s + l — \χ\)9 the proper orthogonal group, which
maps x(0) into x(t) and leaves the subspace orthogonal to the span of
x(0), x(l) invariant. The first segment of our path is defined by matrices
B(t) such that B(χ)(t) = O(t)B{χ)O{ty1. The submatrices B(χ)(t) have
the same eigenvectors as B(χ) so they are of nullity one and have q
positive eigenvalues. To ensure that B{t)eM(^q) for O ^ ί ^ l we
choose the components Bjk(t) of B(t) with jeχ,kφχ so that τj(B(t),χ)

= is independent of t; this is easy since this condition
Vχj x(t)

imposes linear constraints on the choice of these coefficients. Finally
we define Bjk(t) = Bjk for j9 keχ.

2. The matrices B(χ) (1) and B'(χ) have a common null vector x(l)
and the same number of positive eigenvalues. Thus there is a path
O(t) e O+ (s +1 - |χ|), 1 ̂  t ^ 2, such that 0(1) is the identity, 0(t) leaves
x(l) invariant, and 0(2) carries any eigenvector of B(χ) (1) into an eigen-
vector of B'(χ) whose eigenvalue has the same sign. Then we define
B(t), l ^ ί ^ 2 , by

B(χ)(t) = O(t)B(χ)(l)O(t)-\

Bij{t) = Bij{l\ i or jeχ.

3. The matrices B(χ) (2) and Bf(χ) have common eigenvectors, and
the signs of the respective eigenvalues agree. Thus we may define B(t),
2 S t ^ 3, by

Along this path all eigenvectors of B(χ) (t) are constant, all eigenvalues
of B(χ) (t) retain their sign, and the vectors τfi e χ), which for a fixed null
vector depend linearly on the coefficients Bij(t\ieχ,jφχ, also retain
their sign. Thus the signature $f and the number q are constant along
the entire path.
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3.3. Construction of the Group

In this section we choose a base point in the parameter space, and
define a set of elementary loops on this base point which generates the
fundamental group &(r, s). These generators are elementary loops around
the components of MR — SR which were labelled in the previous section.
We also derive relations between these generators which are obtained
from homotopies in the neighborhood of the real section; although we
do not prove that these exhaust the relations in the group, they do suffice
to construct the representation.

We choose as base point a positive definite quadratic form Bo.
Consider a real line through Bo. A point on this line is given para-
metrically by

B = AB i — BQ

where B1=\=B0 is some real point in the parameter space. The intersec-
tions of this line with M(χ) are then given by the eigenvalue equation

det(λB1(χ)-Bo(χ)) = 0. (3.3.1)

Since B0(χ) is positive definite and B^χ) is symmetric we have

Lemma 3.3.2. All the intersections of a real line through Bo with M
are real

The roots of (3.3.1) can never vanish; we may therefore denote their
reciprocals by /^(χ), >.-9μs+i-\x\(χ)9 and assume that

Corollary 3.3.3. The fundamental group

is generated by elementary loops around points of MR — SR.

Proof This follows from the Picard-Severi theorem (cited in [1]).
We obtain certain restrictions on the order in which the points of inter-
section may appear along a real line through Bo from the Courant
minimax principle ([7]):

Lemma 3.3.4.(Courant minimax principle). Let Q be a real quadratic
form on JRm; let JRι be an arbitrary subspace of JRm of dimension l^m
and define the bound

X X

Then μx = inf C(Q, IR'), / = 1,2,... m, are the eigenvalues of Q arranged

in non-decreasing order.
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Now we can prove

Lemma 3.3.5. Suppose χCψCΩ, wίth\ψ\^s. Then for l r g p ί g s + l —|ψl>

Proof. Set Q = Bo*BxBo*. By 3.3.4

μp(χ)= inf sup
R l ( )

sup
xelRP ( x ' X)

x 0 x
^ inf sup — - — = μp(ψ)

. f xTQx
inf sup — - —

ΨX\C l() lRP+lv>x\l() XX

inf sup

χTQχ
sup — - — = μ p + l ψ - χ \ ( χ )

elRP+lΨ-κl X1 X

Here the first step follows immediately from the inclusion l(ψ)Cl(χ),
the third from the fact that W+]ψ~χlnl(xp) has dimension ^p.

We recall the anticlockwise convention for constructing elementary
loops around real points of a Landau variety established in § 1.2 of [1].
The singular points of M in M{ίf, q) are transverse intersections so that
by Table 1, § 1.2 of [1], the elementary loops around points of M{Sf, q)
on either side of one of these intersections are homotopic. Lemma 3.3.2
then implies that the homotopy class α ( ^ q) of an elementary loop
constructed according to the anticlockwise convention around a point
BeM(^q) depends only on ίf and q. We note that not every partition
of Ω may be realized as the label Sf of some component of MR — SR

as in (3.2.1). However, we have

Lemma 3.3.6. // α ( ^ q) is defined for a given partition if = I
\β3

of Ω and a given integer q then ot&q') is defined for all q\ O^q'^s — |ρ 3 |
- |ρ 4 | , and

Proof It suffices to consider the case q' = q — l. Let B be a point in
M(Sfy q)CM(χ) for χ = ρ 3 u ρ 4 . Denote by B' a matrix such that:

1. B'ij = Bip if i o r ; is in χ;
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2. B'(χ) is of nullity 1, having the same eigenvectors as B(χ). The
corresponding eigenvalues are the same as those of B(χ) except for one
negative eigenvalue corresponding to a positive eigenvalue of B(χ).

Then B' e M(ίf, q — 1) and the line segment joining B to B' passes
through just one singular point of M, which is a point of M(χ, 2). According
to a result of Byers and Yang [8] this will be a conical point of M(χ).
Fig. 2 shows the plane section B0BB' of the parameter space. Lemma 3.3.5
implies that Bo lies in the angular sector bounded by the generators of
the cone lying in B0BB' and we obtain immediately from the identification
relations for the conical point the desired relation α(5^ q) = a(^ q — 1).

We now study the question of what partitions ρ l 9 . . . , ρ 4 of Ω may
be realized as signatures. This is determined by the relations among the
linear forms lj.

s+ί

Definition 3.3.7. Suppose r ^ s + 1 . Write lj(x) = £ ljkxk, and define
k=ί

the positional characteristic of the linear forms l} by

'ill ••• hιιs+1

ίs+ίi •" hs+i S+i

for any iί9..., is+ί e {1,. . . r}. F r o m our basic linear independence con-
dition on the lj, (ί1 ... i s +i) + 0 for distinct indices i l 5 . . . z' s + 1.

Mi*) M(χ)

Branches of M (^)

Fig. 2. A section through a conical point
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Definition 3.3.8. Let Sf = ( 1 41 be any partition of Ω. The trans-

pose

03 Ql

τ , is the partition Sfτ = (Ql Qή. An array 3Γ = l η i

iz Άi\Q4 Q

ηt C Ω, is a reduced partition of £f if r\{ C ρh i = 1,... 4.

Lemma 3.3.9. If r ̂  s, then every partition of Ω may be realized as
a signature. Suppose r ̂  s +1, and define, for any distinct i\,... ise {1... r},

Φ
Άl

, with

Then a partition y of Ω is admissible (i.e., occurs as a signature) iff, for
some iγ ... i s ,^ . . .^ is a reduced partition of 5^ or of £fτ.

Proof. The case r^s is easy. Suppose then that r^s + 1 and that
^ is admissible. Let B be a point in M(£f) = [j M(£f, q\ and denote as

a

before by x(B, χ) the corresponding point in P s . Suppose first |χ| = s.
Then x(B, χ) is uniquely determined by the equations lj(x(B, χ)) = 0,7 eχ.
Solving these equations we find that the coordinates x(B, χ)k of x(B, χ)
are the cofactors of the elements ξk in the determinant

' i ll ••• 'iis+1

Ίsl ••• ' i ss+l

where χ = {iί,..., is}. Thus for jφχwe have

' i l l ••• ' i i s + 1

and the resulting equality of the signs implies that ^~il.,js is a reduced
partition of Sf or £fΊ\

Now consider the case |χ| < 5. Then x(B, χ) e l(χ) lies in the interior
of a region in l(χ) bounded by certain of the hyperplanes /(/) for j φ χ.
Choose a vertex y on the boundary of this region. Then y e l(ψ) for some
ψDχ with \ψ\ = s and for any jφψ we have



14 G. Ponzano, T. Regge, E. R. Speer, and M. J. Westwater:

This equality of signs and the relation of lj(y)Jφψ, to the positional
characteristic of the /,- noted already in the case |χ| = s imply that tΓψ

is a reduced partition of S? or y Γ .
Suppose conversely that a set χ = {î  ... is} of distinct indices is given,

together with a partition Sf = I * ) of β having ^ ίβ as a reduced
W3 £2/

partition. Let φ = ρ 3 u ρ 4 ; then y>Cχ and in the neighbourhood of the
unique point yel(χ) there exists a point xel(ψ) such that sgn/^x) is
positive for j e χnρl9 negative ϊorj e χ n ρ 2 . Furthermore for; £ χ sgn/^x)
= sgnlj(y) = (ji1 ... fs); since ^"χ is a reduced partition of ίf it follows
that sgn/^x) is positive for ally eρ 1 ? negative for ally eρ 2 . We can now
construct &BeWsuch that J3(φ) has x as null vector, and having com-
ponents Bij9ieψjφψ, chosen so that the τjjeψ, which are given by

τj = Σ BjkXk >

have the signs specified by ρ3 and ρ4.
We now derive the van Kampen relations satisfied by the generators

α(50 of ̂ (r, 5) (see [1] for a discussion of these relations and their deriva-
tions). We first discuss the bicommutation relations arising from the
tacnodal contact of M(χ) and M(χui) (3.1).

Lemma 3.3.10. Let Bx be a generic point of M(χ)nM(χui). We may

associate with B* a reduced signature 3Γ=[ * 4 , with ρ 3 u ρ 4 = χ,

zX such that the four components of MR — SR adjacent

to B1 have signature XF =(QlUl ρA p{ = (Ql Q4^\ etc., obtained

by inserting i successively into the sets ρl9... ρ4. The van Kampen relations
corresponding to Bx may be written

αCT) α ( ^ ) = α(ieT) α(^) = α(^) α ( ^ ) = α(^0 α('^). (3.3.11)

Proof Take β e M(χ) - M(χ, 2), Br e M(χ u ί) - M(χ u ί, 2). Then we
recall (3.1.2)

ljlx(B,χy]=09 jeχ (3.3.12)

L O l ^ f c ^ l , (3.3.13)

and
/y[x(F,χuQ]=0, yeχuί (3.3.14)

Σ , ^ . (3.3.15)
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Multiplying (3.3.13) by xk{B\χui) and summing over k gives

15

2x(B\ χvi)τBx(B,χ) + £ τ/B,χ) J,[x(F, χui)] = 0, (3.3.16)

a D I s+ 1

where we have used — — = ^ Σ βkjxj(B> x)
Vχk\x{B,χ) J=l

If we manipulate (3.3.15) similarly and subtract the result from (3.3.16),
we find

2x(B\ χui)τlB- £'] x(B, χ) = τ£(F, χuz) /, (3.3.17)

Here we have used the support properties of Tj(B, ψ) and lj[x(B9 ψj] in;.
In (3.3.17) we set B = Br = B1 and obtain either τi(B1,χui) = 0 or

li(x(B, χ)) = 0. In either case it follows from the uniqueness of the null
vectors of B^χ), B^χui) that these null vectors are the same, and so

Fig. 3b

Fig. 3 a, b. Sections through a tacnode

M(χ)
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M(χ) and M(χuί) are tangent at Bί. Moreover we then find that both
Ti(Bl9 χ\jΐ) and li(x(B1, χ)) must vanish. From this follows the first part
of Lemma 3.3.10 concerning the form of the signatures of the components
of MR — SR in the neighbourhood of Bl9 where ZΓ is the signature of any
point of M(χ) or M(χuι) near Bu with the index i removed.

Now consider the plane B0B1B2, where B2 is a point in the common
tangent space to M(χ), M(χvi) a.tBί.A point of this plane may be repre-
sented parametrically by

B = zB0 + (1 - z) B1 + yB2 . (3.3.18)

The line defined by varying z in (3.3.18) for fixed y will intersect M(χ),
M(χuι) in points zx{y\ z2(y) in the neighbourhood of z = 0. In (3.3.17)
we set B = B{zγ\ B' = B(z2) and obtain

{zx-z2) {2x(B\χui)τBox(B,χ)-2x(B\χ^i)τB1x(B,χ)} ^

[ ( β ) ]

Now for y sufficiently small B and B' will be very close to Bx and the
expression in { } in (3.3.19) will be arbitrarily close to 2x(B1, χ)τBox(B1,χ),
which is positive by the choice of £0.We have therefore the two possible
configurations illustrated in Fig. 3. In either case the van Kampen relations
for the tacnode (§ 2.1 of [3]) take the form (3.3.11).

We now show that the relations (3.3.11) hold whenever the generators
appearing in them are defined.

Lemma 3.3.20. Let &~ = I 1 4 withη1 u η2 u η3 u η4 = Ω — i, and
W3 Άτί

suppose that some consecutive pair in the (cyclicly ordered) sequence
ty~, i^ ^7, SΓ{ are admissible signatures. Then all four are admissible, and
the corresponding generators satisfy (3.3.11).

Proof The first statement follows directly from the admissibility
criterion Lemma 3.3.9. One may then construct a tacnode with reduced
signature S' as in the proof of Lemma 3.3.9, and apply Lemma 3.3.10.

We may give

Definition 3.3.21. Let f =\ η i ^ 4 ) , with w,cΩ disjoint sets. Then
Us nil

SΓ is a reduced signature if r ^ s or if, in the case r ^ 5 + 1 , there exist

distinct indices it ... iseΩ such that, for ^ , = ( / I, we have
• " s \Φ Ψil

Ά\ ^ Ψu ^2 ̂  Ψi ( o r Ά\ ^ Wi-> Άi ̂  V̂ i) ( s e e Lemma 3.3.9). \iSf is any partition
having a reduced partition 2Γ which is a reduced signature, then
Lemma 3.3.9 implies that £f is admissible. We may thus define the
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element α(^~) e ^(r, s) by induction on \Ω — {ηγ uη2u*/3 uff4)|, by

Note that from (3.3.11) we have also

We now write down the van Kampen relations corresponding to the
transverse intersections of M(χ) with M(ψ\ where χ, φ are subsets of Ω
whose symmetric difference contains at least two elements.

Definition 3.3.22. Two partitions 6fί9 Sf2 of Ω are transverse (written
&[ || Sf2) iff for some pair of indices ij EΩ,&[9 ^2 have reduced partitions
«̂ i> ^2 which take one of the following forms:

or a form obtained from any of the above by transposing ^ or έF2

 o r

both or by interchanging ^ and έF2

Lemma 3.3.23. // ^ £f' are two signatures such that the corresponding
sets χ = ρ3 u ρ 4 , χ' = ρf

3 uρf

4 have symmetric difference containing at least
two elements, then M(χ)nM(χ') + φ iff y?\ϋf'. In that case we have the
van Kampen relation

Proof. Necessity: Let BeM(^)nM(^"). By repeating the manip-
ulations used to derive (3.3.17) we obtain the identity

Σ τk(B,χ)lMB,χ'))- Σ **(«> zO h(*(B, χ)) = 0, (3.3.24)
keχ-χ' keχ'-χ

where we have used the support properties of τj(B9ψ)9 lj(x(B,ψ)) inj to
restrict the summations to indices k which give non-zero terms. At least
two terms in (3.3.24) must have opposite signs, say those given by k = ij.
The corresponding restriction on ^ Sf' is precisely Sf || Sf'.

2 Commun. πqath. Phys., Vol. 18
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Sufficiency: Let Sf.ST' be two signatures with 9>\9». Since
are admissible there exist x, x' e F s such that

/, (x) = 0 for jeχ,

lj(x)>0 for jeρl9 /J.(x)<0 for j e ρ 2 ,

and similarly for x'. Since ^ || ̂  we may choose τj9 τ} such that

Tj = 0 for j ^ χ , τJ >0 for jeρ3, Ty<0 for

τfj = 0 for j£χ', τ}>0 for jeρ'3, τ}<0 for

and
Σ τk/k(x')- Σ </k(x) = 0. (3.3.25)

keχ-χ' keχ'-χ

We must now construct 5 so that x = x(B, χ), xr = x(B, χ') and

and similarly for x'. We may regard ΰ a s a linear map B: <CS+1 -*<CS+1*
(the dual vector space). Then the above conditions on B may be rewritten
in the form:

In addition we require

2. B is symmetric, i.e. Vy, / e ( C 5 + 1

We may find a map .B satisfying the linear conditions 1 and 2 iff the
compatibility condition Bx(xf) = Bxf(x) is satisfied. But this is precisely
(3.3.25).

3.4. Algebraic Properties of the Group

Because we do not prove that the relations we have obtained exhaust
those of the fundamental group, it is convenient to make

Definition 3.4.1. Let lu ... lr be a set of real linear forms on(Cs+1, and
let si be the corresponding set of signatures admissible under
Lemma 3.3.9. Then define 3tf{r, s, stf) to be the group with generators

, and relations
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whenever F\ ^ e s/, and

whenever S/\ Sf'.
Note that we have not included any label such as si in our notation

^(r, 5) for the fundamental group. This is due to Lemma 3.4.2, whose
(geometric) proof we omit.

Lemma 3.4.2. The fundamental group of the parameter space of the
integral (2.5) is independent of the choice of lj satisfying the basic linear
independence requirement.

We have stated Lemma 3.4.2 only for completeness, and will not use
it further. We believe, however, that J f (r, 5, s/)~&(r9s)9 and for this
reason will usually suppress the dependence of J f (r, s) on si. Note that
in any case § 3.3 implies that there exists an onto map φ : J f (r, 5, si)

We now give a series of disconnected remarks about Jtf (r, s).

Remark 3.4.3. For any 5' Ξ> r, jf(r9 sf) = 34f (r, r) = J^(r). This follows
from Lemma 3.3.9, since for s' ^ r there are no restrictions on the sig-
natures.

Remark 3.4.4. We give some examples of positional characteristics
and the restrictions they impose upon the signatures which will be
relevant for applications.

A. r = s + l, lj(x) = xj9 j = 1,... r. In this case any admissible sig-
nature must have as reduced signature 3\ r for some i. The resulting

condition on Sf = 1 4 is that
\ IQ3 Q2I

B. r = s + 2; lj(x) = xj9 j = 1,... s + 1 lr(x) = — £ x\- In this case
ΐ = l

one calculates that ^Ώ-u n — \ , )> s o that any Sf = \ i 4 must

have £i φ 0, ρ 2 φ ψ.

C. For any r ^ s + 1 we obtain an easily computed positional
characteristic by choosing

where 0<ξί<ζξ2< - <ζξr, and the integers k(i) satisfy k(i)<k(i + ί).
Then the positional characteristic is easily computed: (i\ ... is+i) is
positive for ix <i2 < ••• <is+i and is anti-symmetric in its arguments.
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From this we find that if \χ\ = s, the corresponding reduced signature

Qi = {JΦx\ Ix^fa r]\ is even},

Q2 = {JΦx\\χnfar]\isodd}.

(Here far] = {/ + 1,... r}.)

Remark 3.4.5. The reduced signatures introduced in Def. 3.3.21 satisfy

relations similar to those of the signatures themselves. Take <^= '

ρΛto be reduced signatures, ^ a n d f are defined to be
\Qs Qil

transverse (3~\\ ZΓ') just as in Def. 3.3.22, i.e., whenever they contain the
appropriate reduced signatures. Then

A. <T || f implies a(F) a{3Γ') = <*(&-') oc^r).
B. Suppose ρ'i = QiUηi9 for all i = 1,... 4. Then

(3.4.6)
where

C. Suppose ρ'iDQi, i = l, ...4, and that keΩ, k$Q[KJρ'2κjρ'^ρ'^.
Then

£Γk), (3.4.7)

together with three similar equations obtained from (3.4.7) by rotating
the index k in all signatures. Note that in each of these four equations the
index k moves on F', but not on F.

These relations may be easily proved by induction on the number of
indices which do not appear in ^ a n d ZΓ'\ we omit proofs.

Remark 3.4.8. Properties of ^f(r):
A. There is a natural homomorphism i: J^ (r, s)->Jf (r) defined by

mapping a(^) e Jίf(r,s) into a(£f) e Jίf(r). We do not know if this is an
injection but we will show that the monodromy representation of
Jf (r, s) factors through this homomorphism and is obtained as a sub-
representation of the monodromy representation of Jf (r).

B. The elements α(^) e J»f(r) defined by signatures 9* having a

common reduced signature 2Γ^\ , , I generate a subgroup Jf(u)

\Φ Φl
whose structure depends only on the number u of indices in Ω — $~.
JΓ(W) is defined by the same generators and relations as Jf (u) except
that in JtT(u) we do not have α(^) = α(^ Γ ) .
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C. The elements OL{&~) e Jf (r), with ?Γ a reduced signature not con-

taining indices in a given subset A of Ω, generate a group which is iso-

morphic with J^{r — \A\).

φ φ,
gives, for any signature Sf and index i, the element <*(&"); where «y is
obtained from Sf by transposing the position of the index i. It follows;

that the elements βt = α I , , I lie in the center of ffl (r). Similarly,

L \Φ Φl\
the elements β\= αK J and )8 = αK ,) lie in the center. The

L \Φ Φl\ \Φ Φ)
elements α( , 1 ίg i: g r, generate an abelian subgroup. It turns out

\Φ Φ)
that these form a "complete set of commuting observables" for the
monodromy representation, i.e. their simultaneous eigenvectors form a
basis in the representation space and are uniquely characterized by their
eigenvalues. However, we do not make use of this basis in § 4 as it is not
convenient for the physical applications of § 5.

Remark 3.4.9. For a deeper understanding of the group Jf (r) it
would be desirable to have a solution of the word problem for J f (r).
While the word problem is known to be unsolvable for many finitely
presented groups, it is reasonable to suppose that it will be solvable for
finitely presented groups which arise in a natural geometrical context,
such as 34?(r). This conjecture is supported by a comparison of the
structure of 3tf(r) with the structure of the braid group and other related
groups for which the word problem has been solved [19]. In fact the
method of [19] seems well adapted to attack the word problem for
Jf (r) - with β playing the role of A2 in [19].

§ 4. The Representation Theory

4.1. Introductory Remarks

Let V be the vector space spanned by the germs of the function (2.5)
at the base point Bo. In this section we determine the representation j£?
of the group ring of the fundamental group acting on V:

(We suppress the dependence of j£? on r, s,μ, λγ ... λr9 and lx ... lr. How-
ever, we suppose throughout this section that the μ, λl9..., λr are generic;
we will show that S£ is independent of the choice of integration cycle y.)
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By composing the map j£? with the homomorphism φ :<C(j^ (r, s))
( r , s)) introduced in 3.4, we obtain a representation <£' = S£φ of

(r, s)). Our determination of S£' will be carried out in several stages:
1. We determine the conditions on the representations which arise

from a local analysis in the integration space, and from the homogeneity
of (2.5) in the variables Btj. To determine these conditions we need the
fact that there exists an integration cycle γ0 such that the corresponding
function (2.5) is singular (on some sheet) on each of the components
M(χ) of M. This will be established in Appendix A. Initially we will take
7 = y0. However, when we have determined that the representation
corresponding to this choice of integration cycle is irreducible we will
be able to show that any other choice of γ which does not give a vanishing
integral defines the same function and hence the same monodromy
representation ££.

2. We show that these conditions determine uniquely the trace of the
representation JS?'.

3. We construct a representation of <C(jf (r, s)) Which has the correct
trace, and show that it is irreducible.

4. We then apply Lemma 4.1.1 to show that this representation
is ££'.

Lemma 4.1.1. // & is any group and £?u 5£2

 a r e finite-dimensional
representations of <& on Vl9 V2 such that

a) For any x eC(^), tr(j2\(x)) = tr(j^2(x));
b) S£x is irreducible;

then S£x and JS?2 <wz equivalent.

Proof. This is a slight extension of a well-known theorem [9, p. 174].

Theorem 4.1.2. Any two completely reducible representations of a
finite-dimensional algebra, having the same trace, are equivalent.

To apply Theorem 4.1.2, consider the representation 5£1®5£2 :<C(^)
->L(Fi Θ V2). Let R = (S£x®<£2) (C(^)); R is a finite-dimensional algebra.
We define by projection representations jS?ί, Jδf2 of R, having the Sctme
trace. «S?ί is again irreducible. Let {0} = Wo C Wx C C Wk = V2 be a
maximal sequence of subspaces of V2 invariant under j£?2; then the
induced representations &% of R on WJW^-t are irreducible, and

k

j§f2' = Γ̂ 0 S£% is a completely reducible representation of R with the
i = l

same trace as jSf2 or ££[. Thus Theorem 4.1.2 implies that JS?2 is equivalent
to S£[. But JSfί is irreducible, hence Jέf2 is irreducible and so ££2 = J£2,
and JS?( and JS?2 are equivalent. This implies that J2Ί and j£?2 are equiv-
alent.
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5. The representation of stage 3 will be constructed first for <C(jf(r)).
Then the representation of <C(jf (r, s)) will be obtained as a subreprssenta-
tion of the representation of <C(̂ f (r)) (cf. Remark 3.4.8 (A)).

4.2. 77ιe Conditions on the Representation

(i) Consequences of the Picard-Lefschetz theorem.
Let £f be a signature, χ = ρ 3 u ρ 4 . We denote by X(χ) the constant

, } (4.2.0)

and by α(^) e <C(̂ (r, 5)) the discontinuity operator

Then

(4.2.1)

furthermore ^f(a(^))lX(χ) — I ] " 1 is a one-dimensional projection
operator. We introduce the vector space F* dual to V9 together with the
bilinear pairing (α, b\ a e F*, beV. Thus

J2?'(α(^)) = w(^) ® v(&) (4.2.2)

where u(£f)eV and t i f ^ e F * . (4.2.1) implies (v(^\u(^)) = X{χ)-L
ii) Localization conditions.
If two signatures Sfx and ^ 2

 a r e transverse (Definition 3.3.22),

J?'(a(<?1))J?'(a(<?2)) = 0. (4.2.3)

iii) Effective intersections.
The condition satisfied by the integration cycle y0 (Remark 1 of 4.1)

implies that for any signature ^ o ^ ' ( α ( y ) ) φ l . From the analysis of
an effective intersection (given in the case in which the λj9 μ are integers
in [10] and [11]) we find that for any two signatures i ^ i , ^ differing
only in the position of a single index, corresponding to components
M(χx), M(χ2) of M with a common tangent,

(4.2.4)

According to (i) there exists a constant C(Sfl9Sf2) such that

α ( ^ ) a(9>2) a(Sex) = C(Pl9£r2) α ( ^ ) . (4.2.5)

The bicommutation relation

2 (4.2.6)
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which follows from (3.3.11) (see also [1] Table 1) gives

[C{9>l9Sr2) + X{Xl) + X(χ2)] 2 {aφ>ύ a(<72)-a(<?2) α ( ^ ) ) = 0,

and so by (4.2.4)

C{PU?2) = - {X(Xl) + X(χ2)}. (4.2.7)

(iv) Homogeneity.
The word at infinity w^ (cf. [1]) is represented by a multiple of the

unit matrix,

= cO0l. (4.2.8)

We will not need to determine w^ explicitly as a product of the genera-
tors α(^) of ^(r, 5) (though in Appendix B we show how this may be
done in the particular case r = s +1). It will be sufficient to note that
w" 1 may be expressed as a product of generators α(<9*) such that the
number of generators in the product corresponding to a given variety
M(χ) is equal to the degree s + 1 — \χ\ of M(χ); such an expression is
obtained by writing down w^ in any generic line through Bo.

Definition 4.2.9. The *-involution in <C(^(r, 5)) is given by

for all cteC,^e0(r,s).

Remark 4.2.10. If the parameters λi9 μ are real the conditions (i)-(iv)
on i f are *-invariant. Since $£ proves to be uniquely characterized by
these conditions, it follows that the *-operation may be defined also
on the representation matrices.

43. Formulae for

In this section we derive certain algebraic formulae which hold in
the representation <£' of (C(jf (r)). These will be used in the calculation
of traces for general r and s (4.4) and in the construction of the represen-
tation g1 (4.5).

We first introduce a minimal set of generators of J f (r). Let

^ r = (Qi QΛ b e a fiχed s i g n a t u r e F o r a n y χ C Ω i e t pnβ = (Qi <?4

W3 Qll W3 Ql

be the signature obtained from &" by rotating all indices jeχ clockwise,
i.e.

etc.,
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and let α(χ) = oί(£f(χ)); a(χ) = oc(χ) — l. The α(χ) generate ^ ( r ) , as may
be seen using (3.3.11), and are minimal in the sense that they include
one generator for each irreducible component of M.

In the remainder of this section we will take ZΓ = , so that
\Φ Φl

Ω-χ χ\
. The formulae we derive depend on this choice. But

Φ ΦJ
very similar formulae hold for any choice of 5"; in particular, the im-
portant Remark 4.3.7 holds for any S'.

Lemma 4.3.1. For any χl9χ2CΩ, £?'(a(χ1)a(χ2)) = 0 unless χ1Cχ2

Proof. From (4.2.3).

Lemma 4.3.2. Suppose χί i χ2 i χ3. Then

aiχ2) a(Xl)} = - JSP'{α(χ3) a(Xl)}, (4.3.3)

a{χ2) α(χ3)} = X(χ2) &'{a(Xi) a(χ3)}. (4.3.4)

Proof. Suppose first that χ2 = χiu{/c}, for some k e Ω. Let

, ). Then from (3.3.11)

and from (4.2.3)

J?'{a(χ3)a(<?)}=0,

Thus

and this implies (4.3.3). (4.3.3) for general χ2 follows by repeated appli-
cation of this special case. (4.3.4) may be shown similarly; we also remark
that (4.3.4) is the * of (4.3.3) (see Definition 4.2.9).

Lemma4.3.5. Suppose t\*Xi Then

ltχ2) 2"

3"{a(X2) a(x\) a(χ2)} = C(χ2, Xl) l?'

with

Ciχ1,χ2) = C(χ2,χi) = -X{χi) Π
ie(X2~X

where
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Proof. If | χ 2 -Xi l = l> this is simply (4.2.5). It follows for general
χl9χ2 by introducing sets χ1=ψ0Cψ1 ... Cψk = χ2, with k = \χ2-χί\
and Iψi-ψi-xl = 1, writing

(see Lemma 4.3.2), and applying (4.2.5) repeatedly.

Lemma 4.3.6. Suppose XlQx2Qx3. Then for ϊ'Φ Φfee {1,2, 3}, we
have jS?'{afo) α(χ, ) α(χk)} = CiJkJSf'{αfe) a(χk)l with

3 21 =

C231=X(

C312 = X(

^ 2 1 3 = ~"~

^ 1 3 2 — ~"

X

jπf
¥

π
π

Follows directly from (4.3.2) and (4.3.5).

Remark 4.3.7. Lemma 4.3.6 enables one to reduce any product
of the elements ££' {a(χ)} to a multiple of a product of the form
£"{a(χ3)a(Ω)a{χ2)}. Note that we have not used the formula a(^)
= a(&?τ) at all in this section. Thus Lemmas 4.2.1-4.2.6 hold also for
any representation of Jf(r) (Remark 3.4.8 (B)) which satisfies the con-
ditions of 4.2.

4.4. Determination of the Trace of the Representation $£'

We first reduce the problem of computing the trace of <£' to the
problem of computing the traces of products of discontinuity operators
if '(α(^)). To do this we may use the homogeneity condition (4.2.8).
If in (4.2.8) we take the trace of both sides we obtain an expression for
the trace of the unit element (i.e. the dimension d(r, s) of the representa-
tion) as a sum of traces of products of the ^f(a(^)). However, for general
r, s we do not have an explicit expression for w^ so we prefer to use
(4.2.8) in a different way (taken from [12]) which yields immediately a
formula for d(r, s). We take the determinant of both sides of (4.2.8) and
use the remark following (4.2.8) on the structure of wα J together with
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the relation det JS?'(α(50) = X(χ). This gives

Π X(χ)s+1-M = c-d^K (4.4.1)
φCχCΩ

From (4.2.0) we can write the left-hand side of (4.4.1) in the form c~d

where

( 4 4 2 )

We haye thus proved

Lemma 4.4.3. The representation if' has dimension d(r,s) given by
(4.4.2).

Next we use (4.2.1) to calculate the traces of the individual &'

Lemma 4.4.4. tr Se\a{Sf% = X(χ)-l.

To proceed further we require a minimal set of generators for 2tf (r, 5).
We obtain such a set by taking the generators corresponding to the
intersections with M of a certain.non-generic line through the base
point Bo. Note, however, that the following geometrical constructions
serve only to motivate and organize the combinatorics. Essentially we
need only the defining relations on the generators α(«9f) of Jf (r, 5). Let Y
be a point in the integration space F s not lying on any li9 and choose
coordinates ypl^j^s + 1, such that Y= (0, ...,0,1). The quadratic
forms

(y?+ +Λ 2 )-«y? + i (4 4 5)

define a line in the parameter space W. For R < 0, B(R) is positive definite
so we may suppose our base point Bo is given by some negative value
Ro of R. The line intersects each component M(χ) of M in just one point,
given by R = R(χ) say. We may choose Y so that the numbers R(χ) are
all distinct. Let 0 = R1 < R2 < R3 < < Rt be the ordered sequence of
R(χ); note that Rx = R(φ). Denote by δk,ί^k^t, the generator α(5^)
defined by the elementary loop around the point B(Rk) on the base point
J50, constructed according to the anticlockwise convention. For conven-
ience we let Rt+1 be some real number satisfying Rt+ί > Rt.

Definition 4.4.6. The subgroup Sk of 2tf (r, s) is the subgroup generated
by signatures α(y) such that, for some B G M(£f\ x(B, χ) e Ψs satisfies

Qi Qλ .
B(Rk+ i) [x(J5,χ)] < 0 . Here, as usual, χ = ρ 3 u ρ 4 for Of =

\Q Qi
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the condition means that some point on M(£f) corresponds to a pinch
in the interior of the sphere B(Rk+ί) = 0. Note that φ = S0CS1C ••• cδt

= JT(r9s).

Lemma 4.4.7. For all fc, 1 ̂ f e ^ ί , Sk is generated by δί9 ...δk.

Proof. The proof is by induction on k. We suppose without loss of
generality that ZJ ( 7 ) > 0 for all j (otherwise we replace /,- by —/,-). All
points x such that B(R2)(x)<0 also satisfy lj(x)>0, for all j (Fig. 4);

hence ^ =
φ φ

Now (4.4.6) implies that Sk+1 is generated by Sk together with all
elements α ( ^ ) such that, for some B e M{£f\ the corresponding pinch
point x(B, χ) e Ψs satisfies

B(Rk + 2) (x(B, χ)) < 0, B(Rk+ x) (x(B, χ)) ̂  0 .

Let £f be such a signature. The point x(B, χ) lies in a polygonal region
of Z(χ) bounded by planes ljyj φχ if this region intersects the interior of
{x\B(Rh + 1){χ)-0}9 then &{£f)e£k. The only other possibility is that
the point x(B(Rk+1\χk+1) lies on the boundary of this region of Z(χ).
(Fig. 4 shows this situation in the case s = 2, r = 3, k = 6. Signatures 5^
for which the pinch point x(B, S?) lies in or on the boundary of the shaded
region satisfy α ( ^ ) e$Ί — S6). Thus Sk + 1r& obtained from Sk by adjoining
generators α(5^) for which some ΰ e M ( ^ ) has a pinch point x(J5, χ)
arbitrarily close to x{B(Rk+J, χk+1) = xk+ί

Fig. 4. The transition from &k to &k + ί
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N o w suppose ¥k + x = Γ1 ΆA) (recall δk+1= <*(Sfk+1)). Let *Γ be the
Vis Άiί

reduced signature y = I / , and define
\Φ nil

= {uψ>)\*r is a reduced signature of }

1 ( 4 A 8 )

ρ 4 l , with if3Cρ3uρ1,ff4Cρ4uρ2[.

Our discussion above shows precisely that S'k+1 is generated by &k and Jf!
But Jf generates a subgroup of jf(r,s) isomorphic to Jf(|χ f c + 1 |); the
elements of Jf' are precisely the set of minimal generators of this sub-
group discussed in 4.3. Thus S'k+ί is generated by <?kuJΓ'.

Now δ k + 1 e J Γ . Take α(5?)e JΓ,α(50=l=A+1, with χ = ρ 3 uρ 4 , as
usual; we will have proved the lemma once we have verified a(3f)e$k.
To see this, choose points zpeΨs, peχk+1, satisfying lj{Zp) = δjp for
j e χk+ ί, and let x = xk+1 + ε £ τp(B(Rk+ ±), χk+ x) zp. Then, for suf-
ficiently small ε, Zfc+i-X

a) sgn//x) = sgn //x^ x), e χk+ x

b) sgn/^x) = sgnτp(£(#k+ J, χfc+ i), if j eχk+ί-χ;
c) J5(Λk+1)(x)<0,

where c) is proved using (3.1.2). Then from a) and b) there is a B e M(£f)
with x(B,χ)=x (using 4.4.8); c) then implies a(Sf)e£k.

We are now ready to prove the main theorem of this section.

Theorem 4.4.9. The conditions (i)-(iv) of 4.2 uniquely determine the
trace of the representation S£' of <C(jf(r9 s)).

Proof For each of the subgroups δk, 1 ̂  k ̂  ί, of J f (r, 5) defined by
(4.4.6), denote by C ^ ^ ) the subring of <C(^f(r,s)) generated by the
elements g — 1, g e Sk we write αfe = £fc — 1. We consider the trace of the
subrepresentation J2£ = &'\Ci(£k). Since C(^f (r,s)) = (1^(^)0 {1} and
the trace of the unit element is known to be determined by (i)-(iv)
(Lemma 4.4.3), it will suffice to prove that the trace of S£'k is uniquely
determined by (i)-(iv) for all fc, 1 ̂  k ̂  t. The proof is by induction on k.
For fc = l Ciί^Ί) is generated by a1 and condition (i), together with its
corollary Lemma 4.4.4, determine trt£[ uniquely.

Now consider the inductive step. We suppose then that we have
shown how to compute the trace of S£'(z) for any z e C j ^ ) . Now if
aί ... αM is any generating set for Sk9 the corresponding discontinuities
αf — 1 generate Ci(^fc); we will make use of this freedom to replace the
generators δ± ... δk of Sk with a more convenient set. This set contains
generators of two types:

a) generators u{£f\ where ίf etf' [see (4.4.8)] and ρ 4 u ρ 3 Φ χ f c + 1 .
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b) generators α(5^') which correspond to the points of intersection
with singularities M(χk.)9 fc'^/c, χk><tXk+i> °f the line L in W joining
B{Rk+1) and the point B' given by the quadratic form

B'{y) = Σ (yj ~ *j(B(Rk+1), χk+1) ys+ i) 2

7 = 1

We remark that while the points <5 l5... δt were defined using a line re-
presenting a family of concentric spheres, the generators in b) above
are defined using a family of spheres tangent to B(Rk+ί) at x(B(Rk + 1),
Xk+1) (Fig- 5). It may be shown as in Lemma 4.4.7 that a) and b) do define
a set of generators for δk. Moreover, the generators in b) are all trans-
verse to δk+1; indeed, the intersection point of L with M{χk), k! ̂ Ξ/c,
Xfc'ίXfc+i? defining a generator α ^ ) , is on the transverse intersection
of Mψ") and M{&) (with δk+1 = a(^ r)).

Now from Lemma 4.4.7, Sk+1 is generated by the generators of a)
and b) together with δk + 1 — that is, by those of b) together with all
generators α ( ^ ) e Jfr. Consider a product of the discontinuity operators
for this generating set. Since the trace of a product is equal to the trace
of any other cyclic permutation of the same factors, and since condition
(i) (4.2) gives J£'(al+ x) as a multiple of JS?'(ak+ J, there is no loss of gener-
ality in supposing that JSf'(αfc + 1) appears neither as first nor last factor
of the product whose trace we wish to compute (except in the case in
which ^'(ak+1) is the only factor - in that case we use Lemma 4.4.4).

Fig. 5. Spheres used to define alternative generators for $k
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Now each of the signatures 9" in the chosen minimal generating set

which does not satisfy (4.4.8) is transverse to δk + ί . Therefore by (ii)

(4.2) the product is either zero, or each time in which JZ"(ak+ί) occurs

it is in the form #>((#>y g>'(a ) &'((Sr")), (4.4.10)

where $P\Sf" are in J Γ . But Remark 4.3.7 implies that (4.4.10) may be
expressed as a multiple of the product

where α(^0) = α ί 1 I is in X\ But α(^0) is in δk also; thus the trace
\Φ Qil

may be calculated using the induction assumption.

4.5. Construction of the Representation

In this section we construct a representation ££" of Jf (r, s), satisfying
the conditions of 4.2, and irreducible; as observed in 4.1, this is then the
unique representation satisfying these conditions, i.e. ££" = S£'. The
construction falls into two parts:

1. We construct the representation for ffl (r) = Jf (r, 5), r ^ 5, satis-
fying the conditions of 4.2, and irreducible. To obtain candidates for the
matrices of Jδ?" we assume the existence of this representation and exploit
the conditions which we want i?" to satisfy to come up with formulae
for the matrix coefficients of &"{μ{Sf% 9* an arbitrary signature. It is
then a simple exercise to check that the resulting matrices do define a
representation of ^f (r) satisfying the conditions of 4.2, and irreducible.

2. In the case r > s we define a representation of Jf (r, s) by mapping
it into Jf (r) (Remark 3.4.8 (A)) and taking the restriction to the image of
Jf(r, 5) in J^(r) of the representation constructed in 1. This representation
of J f (r, s) evidently satisfies (i)-(ϋi) of 4.2 since the representation JS?"
oίJ^(r) satisfies these conditions. To show that it satisfies (iv) we compute
its dimension. Finally we show that it is irreducible.

Lemma4.5.1. W α β ί ) ) = - l .

(Φ Φ\
Proof. Since <£" is required to be irreducible and αί is in the

center of J^(r) (Remark 3.4.8 (D)) it follows that j?"(α f f | | is a
\ \Φ Φl)

multiple c of the unit matrix acting in the representation space. To
determine c we show that
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Since we have already shown (Lemma 4.4.3) that the conditions of 4.2
imply

it will follow that c = — 1, as asserted. Now by definition ((3.3.21))

(Q-χ χ\
where the α(y) = α . . are the minimal set of generators for Jtfίr)

\ Φ Φl
used in 4.3, and the order of factors is such that a{%x) stands to the left
°f α(%2) if Xi^Xi- We apply 5£" to (4.5.3) and make use of the formulae
of 4.3 to give

C
- Σ

4C

We have tr j£f "(α(χ)) = X(χ) -1 ((4.4.4)) and (4.3.5) gives

trJ2?"(α(χ1)α(χ2))=-A-(χ2) Π (l + ϊi)
ίeχi-χ2

We take traces in (4.5.4) and use these formulae to obtain (4.5.2), after
simplification.

According to 4.2 (i) the representation space E(r) for ££" is to contain
for each χ,φCχCΩ,a vector u(χ) which spans the range of JS?'f{a(χ)). We
normalize the u(χ) so that

Since the Se"{a{χ)) generate jS?"^C(jr(r))) the vectors w(χ) span the
representation space. It is convenient to work with the vectors Θ(χ),
φCχCΩ, defined by

which also span the representation space. From the formulae of 4.3 we
obtain

J?"(a(η))Θ(χ)=\ ]
β D η (4 5 5)
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From (4.5.5) and the expression for αl . . I as a product of α(χ) ((4.5.3))
\Φ Φ!

we obtain the formula

Φ^jΘ(χ)==(-)lχlX(χ')Θ(χ'), (4.5.6)

where χf = Ω - χ. But by Lemma 4.5.1, W α ( J Jj j = - 1 , so

(4.5.7)

(4.5.7) shows that the vectors Θ(χ) with rφχ span the representation
space E(r). However, there are only 21""1 of these vectors and from (4.4.3)
we know that $£" should have dimension 2 r~1. Hence the vectors Θ(χ),
rφχ, must form a basis, and we therefore take the formulae which are
obtained from (4.5.5) and (4.5.7) for £"'{a{η)) applied to vectors Θ{χ\
rφχ, as a sum of these vectors as a definition of the matrix J£"(a(η)).
The matrix S^"{a(ίf% Sf as arbitrary signature, may then be computed
frQm the expression for oc(<?) as a word in the minimal set of generators
a(χ). It is simplest to organize this calculation as an induction on the
number of indices in ρ 2 u ρ 4 . (3.3.11) gives a formula for α(«^) as a con-
jugate α(^1)α(5^)α(e9

ί ?

1)"1 where Sfx and ^2 have one less index in
ρ 2 u ρ 4 , e.g.

a \ l 4 = α L 1 4 )a\1 4 \ a \ l 4

\Φ Qil \Φ Qi-y \Φ Qi-y \Φ Qi-y

for any ie ρ 2. Writing S£"(aψ>)) = u{Sf)®υ{5f\ we obtain

Qi/ψ

(4.5.9)

where λ(η) = f ] Y{ for any ηCΩ (see (4.3.5)). The reader can now check

that the formulae (4.5.8) and (4.5.9) furnish a representation !£" of J f (r)
satisfying conditions (i)-(iv) of 4.2. The image J£"(<E(3^(r))) is a complete

3 Commun. math. Phys., Vol. 18
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(Ω-η η
matrix ring this follows from the fact that <u. .

\ I \ 0 ΦK
Ω-η ηΦ Φlx

 r'Ί

reη\ and

r φ η > are easily seen to be linearly independent as vectorsV
\

in C ^ " 1 J, hence <£" is irreducible.

For an arbitrary reduced signature

^ ρ*) with
Qil

we obtain the formula (α(^~) = α ( ^ ) - 1 )

\χ-QA) (4.5.10)

3 c Ψ c Q'A

 δβ2 c x c eϊ X(Φ) λ(ψ ~ Qi) A(ρ 4 ~ X)}

which is equivalent to (4.5.9) in the case τ = Ω (here again χ' = Ω — χ).
We now obtain the (irreducible) representation 3?"{r,s) of J^(r,s)

as a sub-representation of JSf". More precisely, we define ^ ( ^ ( r , s)) to
be the sub-ring of C(J f(r, s)) spanned by discontinuities a{^\ set
£(r,sj = J2wr(C1(jr(r,s)))£(r), and define &"(r,s) to be &"(tf(r9s))
restricted to the vector space E(r, s). (We again note that E(r, s) depends
implicitly on the positional characteristic introduced in Definition 3.3.7.)
j£?"(r, 5) clearly satisfies the conditions (i)-(iii) of 4.2; it reinains only to
calculate its dimension and show that it is irreducible.

(Ω-χ φ\
Lemma 4.5.11. For any χCΩ, define w(χ) = u\ eE(r). Then

\ Φ XI
E(r, s) is spanned by

lw(χ)\lΩ ~ X Φ) is admissible in JT(r, s)\. (4.5.12)

Proof. We have to prove that for any admissible 9* = I 1 4 the

vector u{£f) is in the span of the vectors (4.5.12). The proof is by induction
on fc = |ρ 3 | + |ρ 4 | . For k = %u(£f) is one of the vectors (4.5.12) so the
proposition holds trivially. For k> 0 we have, say, ρ 3 Φ φ. Let j be any
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index in ρ3, and write 9* = ̂ . Then

a{9>) oΓ ̂ J Γ ) (4.5.13)

- for both sides of the equation are equal to a(^j). (4.5.13) implies that
the vectors

and

are proportional. The first of these vectors is a linear combination of
u(S?) and κ(^}), and the second of u(£f) and u(J&). Since M(^}) and
w(J^) are not proportional (cf. (4.5.8)) we obtain an expression for u(£f)
as a linear combination of w(e^ ), u(j^). But ^} and J^" are admissible
signatures with |ρ3 | + |ρ4 | = fc-l so by the induction assumption
u(^}), M(J '^) lie in the span of the vectors (4.5.12). Hence u(£f) lies in this
span.

Lemma 4.5.14. The vectors w(χ), χCΩ,rφχ, are linearly independent.

Proof. w(χ)ψ = (-ψ"tiλ(ψnχ)-X(φ)(-l)^"tiλ(ψuχ) ((4.5.8)).
Since rφψ and rφχ the λ factors in this equation involve only theY{,

i Φ r. Our assumption that the λt are generic implies that X(φ) and these
Yt are algebraically independent. The determinant of the matrix {w(χ)ψ}
can therefore vanish (for generic λt) only if it does so for X(φ) = 0.
However, in that case the determinant does not vanish since its expansion
contains exactly one term of maximum total degree in the Yh obtained
by taking the product of the diagonal coefficients.

Lemma 4.5.15. There are precisely d(r, s) vectors (4.5.12).

Proof. There is a natural 1:1 correspondence between the vectors
(4.5.12) and the connected regions into which F s is divided by the lj.
The number of these regions N(r, s) depends only on r and 5, and may
be calculated by deriving the recursion formula

N(r, s) = N(r -1, s) + N(r -1, s -1)
and noting that ,, ,.

H ί::!
(see [13]). It follows that N(r, s) = d(r, s), defined by (4.4.2).

Lemma 4.5.16. JS?"(r, s) (<C(jf (r, s))) is a complete matrix ring of
dimension d(r, s); and hence j£?"(r, 5) is irreducible.

Proof. For admissible 9> = ί ~X ], we write (in E(r))



36 G. Ponzano, T. Regge, E. R. Speer, and M. J. Westwater:

with z{χ)eE(r)*. By Lemmas 4.5.11 and 4.5.14 the vectors w(χ) (i.e., the
vectors of 4.5.12) form a basis in E(r, s). Define z'(χ) e E(r, s)* by

(zf(χ), w) = (z(χ), w), (any we£(r, s)).

-χ φ
From (4.5.8) and (4.5.9) one calculates that for admissible Sf = ,

Sf'=\ . V ) one has (z'(χ\ w{ψ)) + 0. It then suffices to show that

\ Φ W
{z'{χ)\rφχ} are linearly independent, since this implies the linear inde-
pendence of the d(r, s)2 operators α(^) α(<9") Thus we must show that
the matrix {{z'{χ\ w(ψ))\rφχ, ψ} is nonsingular. Since

this matrix is equivalent to a submatrix of the one considered in Lemma
4.5.14; the proof of nonsingularity is similar.

We have now completed our construction of an irreducible represen-
tation j£?"(r, s) of ^f (r, 5) which satisfies conditions (i)-(iv) of 4.2. Since
only these conditions were used in the calculation of traces (4.4), we
know that ££"{r,s) has the same trace as the representation J£'(r,s)
generated by the integral (2.5) Thus Lemma 4.1.1 implies that <£" and
JSf' are equivalent.

Remark 4.5.17. Recall we write Hγ for the function (2.5) defined by
the integration cycle y. We have actually proved the above result only
for γ of the type discussed in Remark 1 of 4.1 (see also Appendix A,
where a cycle γ0 of this type was constructed). But now suppose that y
is arbitrary except for the condition that Hγ be non-trivial. Then there
is some signature £f such that a{^)3^y 4= 0, i.e., that He{9>) is in the vector
space V(y) generated by Hγ (here eψ>) is the vanishing cycle for Sf\
But Hem is also in V(γ0); moreover, the fact that S£'{r, s) (<C(jf (r, s)))
is a complete matrix ring implies that He(y), and hence Hy, is singular
on every M(χ). That is, y is actually of the required type, and generates
the same representation J£?'(r, 5). We have also shown that any two
nontrivial cycles y and y' actually generate the same (multi-valued)
function.

Remark 4.5.18. For real generic values of the parameters λ{ there is
a hermitian scalar product on the representation space £(r), uniquely
defined up to a factor, with respect to which the representation <£"{r)
oϊJ^(r) is "unitary". The representation Jέ?"(r, s)of Jf(r, s) is then'unitary"
with respect to the induced scalar product on E(r, s). To describe the
scalar product on E(r) we regard it as a non-singular antilinear map

(Ω-χ χ\
τ:E(r)^>E(r)*. Since the vectors u(χ) = u\ ] span E(r) it suffices

V Φ Φl
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to define τ on these vectors. We have

τ(w(χ)) = gχv(χ),

with

and

4.6. The Problem of Contracting a Line

In [1] we proved an isomorphism theorem which described the
effect on the monodromy ring of cutting a line of one of the self-energy
graphs studied in that paper, and remarked that this theorem might
be generalized to arbitrary graphs. For the single loop graphs studied
in the present paper this operation is trivial but the operation of contrac-
ting a line (which is trivial for the self-energy graphs) is not. In this section
we note the implication of our results on this question. The discussion
will be confined to the case 3 of integrals not having second-kind singulari-
ties. As will be shown in §5.1 the fundamental group in this case is
&(N, N — 1), the corresponding group defined algebraically J>P(N, N— 1).
(Definition 3.4.1.) We will distinguish quantities related to JP(N - 1 , N - 2)
from quantities related to J f (AT, N — 1) by primes. Thus the generators

oiJ4T(N - 1 , N - 2) will be written α' [ ρ i Q4\ where ρ 1 u ρ 2 u ρ 3 u ρ 4 = β i v.
W3 Qil

There is an evident homomorphism h:JP(N-l,N-2)->Jir(N,N-ϊ)
which maps a generator α'(^) of 34? (N — 1,N — 2) into the element
a(y) of Jtr(N9N-l). The image of JP(N-1,N-2) under h is the
subgroup of JP(N9 N — 1) generated by the elements α ^ ) , £f a reduced
signature not containing the index N.

Theorem 4.6.1. The representation J^(A) h of J^(N — 1,2V - 2) is the
direct sum of the representations J S ζ J . ^ λ ^ ) , ϋ ^ ^ ί λ * - * ) , i.e. of two
copies of the generic representation of J^(N — l,N — 2) for different
parameter values. The parameter values λ+,λ~ are given via the corres-
ponding X+, X~ by

χgΩN. (4.6.2)
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Proof. The element βN = α ( , , ) commutes with hJf(N-l9N-2).

\Φ Φl
Hence ^(λ)h is the direct sum of representations of Jf (JV —l,Λf — 2)
acting in the eigenspaces of J£χ(βN). Now [^(βjv)]2 is a multiple of the
identity (cf. Remark 3.4.8 (D)) so there are just two of these eigenspaces.
The corresponding eigenvalues (computed from 4.5.10) are ±]/—YN~1.
Using (4.5.10) and the expression for the word at infinity obtained in
Appendix B it may be verified that each of the representations into which
<£'N(λ)h splits satisfies the conditions which characterize the representa-

tion J ^ _ ! of JP(N-l9N-2) (4.2), the corresponding values of the
parameters being given by (4.6.2).

In order to understand the meaning of the homomorphism h on the
geometrical level we seek a homomorphism k such that the diagram

φ

commutes. To construct k we define an embedding k! of the parameter
space {B'ij: 1 ̂  ij< N} for &(N — l,N — 2) into the parameter space
{B{j: 1 ̂  ij ^ N} for #(N, N -1) by

fc'(B% = Bί, l£i,j<N

= 1 i=j = N

= 0 otherwise

k is then the homomorphism of fundamental groups induced by k'. It
is easily seen to have the desired properties. Unfortunately the con-
struction of k! does not appear to have an immediate analog for more
general graphs so we do not have a conjecture on the effect of contracting
a line in a general graph.

§ 5. Applications of the Representation Theory

5.1. Relation of Generic and Physical Integrals

In § 2 we distinguished four cases in our study of the integral (2.2). In
this section we discuss the first three of these cases, applying our rep-
resentation theory of the generic integral (2.5) to obtain the monodromy
rings of the integrals in question. For the moment we restrict our attention
to cases 2) and 3), in which no renormalization is necessary.

For these cases we write the integral (2.2) in the form (2.4), and
eliminate the ^-function by performing the ocN+ί integral. Then (2.4)



Monodromy Rings 39

becomes

N \N-m

) N-X
( 5 U )

For the moment we ignore the Γ- function in (5.1.1). It is convenient to
think of obtaining (5.1.1) from (2.5) in two steps. In the first we keep the
parameters λj arbitrary, but take

(5.1.2)

and in case 3,

while in case 2,

s = N-ί,
By = Au

lj(a) = a,

P(α) = ( -

(U =
(7 = 1.

Σ«.
i = l /

N

i = l

i,

r
N),

m

FPfe WΪ7/ assume that (5.1.2) αra/ ^fίter (5.1.3) or (5.1.4) toWs /rom now on.
The second step is to specialize the parameters λf

and, in case 2, λN+1 = N — m.
There remains to consider only the integration cycle to be used in

(2.5). Let δx be the (relative) cycle of (5.1.1):

δx = {α e P " " 1 |α f ^ 0, i = 1,... N} .

Then H δ l (see (2.5)) is well defined whenever λj> — 1, j = 1,... AT. More-
over, when Ay is non-integral, j = 1,... JV, we may write

where δ0 is a closed cycle on which the integrand of (2.5) is single valued,
and such that the support of δ0 is arbitrarily close to δx [10]. The rep-
resentation theory derived in § 3 and § 4 thus applies to Hδί we must
study the behaviour of this representation when the A's are specialized.



40 G. Ponzano, T. Regge, E. R. Speer, and M. J. Westwater:

Note that since the singularity surfaces are independent of the λ% the
discussion of § 3 applies to the physical integrals. In particular, we may
label the singularity curves of the physical integrals by the same sig-
natures.

Remark 5.1.5. The reader should verify that the conditions (5.1.2),
together with either (5.1.3) or (5.1.4), give rise to the positional charac-
teristics discussed in Remarks 3.4.3 (A) and 3.4.4 (B) respectively. Thus,

in Case 3, all signatures £f = \ * 4 in which ρiUρ 2 + 0 occur; in
V03 Qil

Case 2, all signatures occur in which ρx φ φ, ρ2 + Φ I*1 Case 2, a curve is
a second type singularity when it comes from a pinch involving lN+l9

that is, £f is the signature for a second type singularity iff N + 1 e ρ 3 u ρ 4 .

Definition 5.1.6. Let Ψ be the germ at A0(=B0) of the integral (2.5)
[Case 2 or 3] taken over δ0. Then Ψ is called the physical sheet.

We have defined the representations (4.5) in an abstract way, with no
reference to any particular contour. But we have

Lemma 5.1.7. The physical sheet Ψ satisfies

unless ¥ = lQί QA satisfies
\Qs Qil

a) in Case 3,ρί=φ or ρ2 = φ,
b) in Case 2, ρ1 = {N +1} or ρ2 = {N +1}.
These conditions suffice to determine Ψ uniquely as a vector in the

representation space E(r,s) (see 4.5).

Proof. Conditions a) and b) are called positive α conditions; they
express the fact that the pinch must take place on the contour δx. One
verifies the first part of the Lemma by the techniques of Appendix A;
specifically, one may find, for any £f not satisfying a) (resp. b)), a (non-
generic) real line Λ(t) in the parameter space such that A(0) = Aθ9

AitJeMiS?) for some ί ^ O , and {α|A(ί)(α) = 0,0 ^ t ^ t1}nδ1 = φ.
The second part of the lemma follows directly from (4.5.9).

A natural question arising from the above is the connection between
our physical sheet as a germ at Ao and the usual physical sheet. Let Ax

be any real quadratic form not lying on any singular curve, and define
AlfE as the form

s + l p

( A J i £ α,
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Then the usual physical sheet at the point Ax is

Ψ(Aί)=lim+F(AUε)

(see (5.1.1)). Of course, this agrees with Ψ at Ao.
Now consider the line A0A1 parameterized by

41

Let β: [0,1] ->C be a path such that γ = A(β(s)) is a path from Ao to Ax

which is drawn by the counterclockwise convention. Then

Lemma 5.1.8. The physical sheet ΨiAJ is the complex conjugate of
the analytic continuation of Ψ along γ:

Proof. Take ε < 0, and consider the line

Let y1 (s) = Ao 5 ε and γ2(s) = A1Λί_s)ε(se[0,1]); for sufficiently small ε
the composite path

is homotopic to γ. But for Reί Ξ> 0, Imί ^ 0 the quadric {Aε(ή = 0} does
not intersect δ1 = {oc\ αf ^ 0}, so we may continue Ψ along Aε(β)γ1 without
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Fig. 6. Landau curves of the triangle graph (without second kind singularities)
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distorting the initial contour. Thus

= lim F{A1 ε) = γ'ψ = yψ.
ε-*0— '

In order to exemplify the results of previous sections, we show in
Figs. 6-8 the real two-dimensional section of Landau curves and their
corresponding signatures for the simplest nontrivial cases.

In Fig. 6, which corresponds to N = m = 3, mί m2, m3 are arbitrary
positive constants while 0<A23<m2m3 and ^ 4 1 2 , ^ 4 I 3 G R Clearly, the
variety M(l) is confined at infinity in the plane spanned by A12, Λί3. The
signatures for M(2), M(3), M(φ) are easily computed from (3.1.2), (3.2.1);
according to Lemma 5.1.7, the heavy lines are actual singularities for the
physical sheet. This case corresponds to Fig. 2.3.3 a of [5]. In Fig. 6, as
well as in Figs. 7, 8, the base point of the fundamental group is placed at
the origin of the coordinates.

Fig. 7 corresponds to N = m = 4, with values of the masses associated
to internal and external lines of the Feynman graph which satisfy the fol-
lowing relations: m{ j < mt + nij for ij =12,23,34,41, where mft i+i = kfti+1

1.
Since all masses are fixed, the varieties M(123), M(124), M(134), M(234),
M(12), M(14), M(23), M(34) do not show up in the affine plane spanned
by the Mandelstam variables s, t. In order to avoid confusion, the
signatures of only part of the branches shown in Fig. 7 have been dis-
played; the reader can retrieve the missing signatures by means of
Lemma 3.3.10. Fig. 7 corresponds to Fig. 2.4.4 of [5].

In Fig. 8, the case N = m —1 = 3 is considered when all masses
depend linearly on σ, τ e R 2 All Landau curves, of first and second
type, are shown. Note that this section is, in the parameter space, not
far from conical points of M(φ) as shown by the signatures of the cubic.
If the varieties M(14), M(24), M(34), M(4) are disregarded and the index 4
is dropped from the remaining signatures, we obtain a generic section
for the case N = m = 3, which contains in particular Fig. 6.

5.2. Specialization of Parameters - Case 3

In this section we study the integral without second kind singularities
[(2.5) with (5.1.2) and (5.1.3)] under the specialization λj = 0,; = 1,... N.
The key remark is

Lemma 5.2.1. Let Ψ(λ) be the physical sheet (Definition 5.1.6), and
let h(λ) eC (&(N, N -1)) be a finite sum

Hλ)= Σ Mλ)«,
1 The actual parameters of Fig. 7 are: An = 0.643, A22 = 1.00, A33 = 4.12, AAA = 4.00,

A12 = 0.131, A14 = 1Λ3, A23 = 1Λ6, A34= -0.415, A13 = 2.38- ί/2, Λ 2 4 = 2.50-s/2
where s, t e R

2 The parameters A^ corresponding to Fig. 8 are: An=l+2]/3τ, A22 = l — 3σ
- ] / 3 τ , A33 = l + 3 σ - ] / 3 τ , A12 = -3.04σ + 1.23τ, A23 = -0.457σ-3.25τ, A31 = Z59σ
+ 2.02τ.
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where ka(λ) are complex-valued functions continuous at λj = 0. Then

lim &(h{λ)) Ψ(λ) = JS?[A(O)] Ψ(0).

Proof. We simply observe that &(μ)Ψ(λ){<ze9{N9N-l)) is an
integral over a fixed contour, which is continuous at λj = 0.

Now consider the representation formulas (4.5.8) and (4.5.9); these
are written in a certain basis {Θ(χ) | χ C ΩN} actually, Θ{χ) depends on λ.

Lemma 5.2.2. a) The physical sheet Ψ(λ) may be identified with
Θ{φ)(λ) (φ = empty set), b) The limiting vectors Θ(χ)= ]imθ(χ)(λ)

exist and satisfy

Θ(φ)=Ψ,

ΨDX L\ \ Φ

(Here Ψ = Ψ(0)).

Proof, a) From Lemma 5.1.7 and (4.5.8) and (4.5.9) we see that Ψ is
proportional to Θ(φ); the identification is a matter of normalization,
b) This follows from Lemma 5.2.1 and the formulae of 4.5.

Theorem 5.2.3. Let he<ε(g{N,N -1)) be as in Lemma 5.2.1, and let
<&{h)(λ)χψ be the matrix elements of 3?(h) (for generic λ) in the Θ(χ)
basis, i.e.

(5.2.4)

Suppose that <£{h)χxp = lim &(h)(λ)χψ exists. Then (5.2.4) also holds in

in the limit λj-^O:

Proof. From the hypothesis and Lemmas 5.2.1 and 5.2.2, both sides
are continuous functions of λ.

Note that the limits of the matrix elements (4.5.8) and (4.5.9) exist.
Again writing £e(a(Sf)xJ = u(^)χv{^)ψ, we have

o o) ( ) ^ c , c Ω ρ 3 ( f ^ 3 c , c β - ρ 4 } (5.2.6)
β3 Ql

) ( ^ { β i C v c a β 2 ( r βlCvCO.βι}. (5.2.7)

From now on we take λj = 0. Let V denote the vector space of germs
at Bo spanned by analytic continuations of Ψ. From Theorem 5.2.3 and
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the following remark it is clear that the vectors Θ(χ) span V. Then (5.2.5),
(5.2.6), and (5.2.7) will provide a representation of 0(JV, N -1) in V once
we have proved

Theorem 5.2.8. The vectors Θ(χ), χCΩN, are linearly independent.
Hence dimV = 2N~1.

Before proving 5.2.8 we give a lemma which is interesting in itself.
Note that it may be shown directly that the physical integral (5.1.1) is
singular on all Landau curves M(χ); we omit details.

Lemma 5.2.9. Let &{a{Sf)) = u(5f)®v(Sf)9 as usual. If Φ is any sheet
of the function, then (v(SP\ Φ) = 0 iff M(^) is not singular on Φ.

Proof. This is trivially true for generic A. Now suppose (v(Sf), Φ) = 0,
with Φ = Σc(x) ®(x) Since v(£f) is not identically zero, there is a ψ C ΩN

such that (υ(Sf) (A), Θ{ψ) (A)) = d{λ) do not vanish for A->0. Then if

define
Ξ(λ) = Φ(λ) - d(A)"1 (υ(Se) (A), Φ(λ)) Θ(ψ) (A).

We see that {v(&>)(λ),Ξ{λ)) = 0 for all A, and that Φ = \imΞ(λ). Thus

is not singular on Ξ(λ\ and hence not on Φ.
Now suppose (v(6f\ Φ) Φ 0, but that M(£f) is not singular on Φ. Since

v{Sf) is singular on some sheet Ξ we have {v(^\ Ξ) Φ 0, and hence there is
a sheet £' = aΞ + Φ, with α Φ 0, such that (υ(£f)9 Ξ') = 0. But then Mψ>)
is not singular on Ξ this is a contradiction.

Proo/ o/ Theorem 5.2.8 Let Φ = £c(χ) Θ(χ) have c(χ0) Φ 0 for some
χ0 we must show Φ φ 0. But

hence M l , 0 is singular on Φ and Φ Φ 0.
W> Ω-χ0J

This completes the derivation of the representation formulae for
case 3. We note that the formula dimF= 2N~X was derived by Boyling
[14] and also follows from the homology decomposition theorem of
Fotiadi, Froissart Lascoux, and Pham [15] (the same remark applies
in the dimension formula of 5.3). It is also interesting to observe that
the formulae (5.2.6) and (5.2.7) satisfy the Cutkosky-Steinman rules,
as expected, and that the discontinuity around the leading curve vanishes
when N = m +1 (in which case the leading curve is a pole). Note, however,
that Lemma 5.2.9 is valid even when the curve M(ίf) is a pole; thus our
methods enable us to determine exactly on which sheets the poles appear.
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5.3. Specialization of Parameters — Case 2

In this section we study the integral with second kind singularities
but without renormalization [(2.5) with (5.1.2) and (5.1.4)] under the
specialization λj = 0, j = 1,... JV, λN+ί = N — m. Now in the previous
section we were able simply to take the limits of the matrix elements
(4.5.8) and (4.5.9); the essential step in the argument was that the basis
vectors used in (4.5.8) and (4.5.9) were continuous (in λ) linear combina-
tions of group elements applied to the physical sheet. This is no longer
true in the case under consideration; thus we must rewrite the matrix
elements in a more suitable basis before taking the limit.

For the moment we consider generic λ. Note first that for any
<*(&) e &(N + 1 , N -1) we have v(£f)φ = 0 [see (4.5.9)]. This means that
we obtain a representation S£* of &(N + 19N — 1), equivalent to the
representation derived in 4.5, by defining

where P is the projection P Θ(χ) = [1 - δχφ] Θ(χ). That is, j£f* is a repre-
sentation in the subspace of E(N + Ϊ) spanned by {6>(χ)|χC{l,... iV},
χ + φ}. We will work with if* from now on; this simplifies the following
calculations.

Lemma 5.3.1. The physical sheet Ψ(=Ψ(λ)) may be identified with
Θ(ΩN+ί).

Proof. See proof of Lemma 5.2.2.
We must now define a new basis of the appropriate type. For χCΩN+ί,

we writeχ* = Ω Λ Γ + 1 - χ .

Definition 5.3.2. For ηCΩN+u with

Θ(η)(=Ψ), if η = ΩH+1

otherwise.
Using (4.5.8) and (4.5.9) we can calculate the relationship between

the bases {(9(χ)} and {Φ(χ)}, (where χ C Ω N + i , X + Φl Writing Φ(η)
= TηχΘ(χ) gives

τ=-δ*-(-r\χ(x)γN+ίδ ( 5 3 3 )

(5.3.4)
+ ll-(-)Mχ(χ*)YN+Jδη,ΩN+ι-YN+ίδηfΩN+ιδχ,ΩN+ί}.



Monodromy Rings 47

Note that the factor (1 + YN+1) ~x in (5.3.4) is singular for λN + x -> JV - m.
This shows that the Θ basis is indeed not appropriate for the speciali-
zation.

As before we write JS?*(ί^) = u(Sf)®υ(Sf). We may derive the com-
ponents of u and v in the Φ basis, which we denote by primes, from
(4.5.8), (4.5.9), (5.3.3), and (5.3.4).

a) First kind singularities:

μ3

Ψ3

b) Second kind singularities:

In

μ4u{iV + l}\

(5.3.5)

(5 3 7)

(5.3.8)

We may now argue as in 5.2. In particular, the basis vectors Φ(η)
have limits when we specialize the λ's given by

Φ(η)=

Ψ, if η = sN+ί

ψ
( 5 3 9 )

otherwise.
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The equivalent of Theorem 5.2.3 holds; the limiting "matrix elements"
&*{h)Xtψ may be obtained from (5.3.5)-(5.3.8). Thus

a) First kind singularities:

u'(μi )
U {N + l}) (5.3.10)

= (-)W {^cc^l-Γ + ίwcci (5-3.11)

-δμ2,Φ(-rίί+(-rδη<ΩN+j}.

b) Second kind singularities:

(5 3 12)

. ( - Γ + 1 + " ί Δ ' < 2 1 } ,

/ μ i μ 4 u { N + l}\ ,

U μi k "2 C" c / i i

We finally have

Theorem 5.3.14. 77ze i βcίors {Φ(?/)|//CΩN+1,^ + Φ}, gfivew by (5.3.9),
are linearly independent. Hence the vector space V has dimension 2N — 1,
am/ (5.3.10)—(5.3.13) give the representation of &(N + l,N-l) in V.

Proof. We argue as in the proof of Theorem 5.2.8 (Lemma 5.2.4
applies unchanged); using the dual vectors

,ι χ

φ
φ {N + ί

We note from (5.3.12) that the leading second kind singularity is a
pole whenever N + m is even, as expected.

5.4. Renormalization (Case ί)

In this section we study the integral (2.2) in the case N < -^-, where

m is even, using the method of analytic renormalization [3]. Let β be a
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generalized evaluator in the sense of [3]; as in [1], we require that β
satisfy an additional property as follows: Let f(λx,... λN) be any function
in the domain of ,/, and, for ze(C, define fz(λu ... λN) = f(zλί,... zλN).
Then β must satisfy

(5.4.0)

The fundamental result of the theory of analytic renormalization
may be stated, for our case, as follows. Define

N \N-m

E(λ,A) = Γ(μ) J <=1 V, \J ,(«), (5.4.1)

m 1 (Nm 1 ( \
where μ = N— Γ + ~y(Σ^i (Note that this is the generic integral

(2.5) with (5.1.2), (5.1.4), the additional specialization λN+1 = N — m, and
a factor Γ(μ).) Then the physical sheet of the renormalized integral is
given by

We wish to study the monodromy representation j£?/ of F(A). F(A)
is analytic in the same region (in A) as E(λ, A); that is, the appropriate
fundamental group is @(N + 1 , N — 1) as in 5.3. Since the physical sheet
is the same, we use the representation formulae (5.3.5)-(5.3.9) for E(λ9 A).
We will adapt the notation of 5.3, writing, for η C ΩN+ ί, η Φ φ,

E(λ,A)(=Ψ) if η = ΩN+ί

( 5 A 3 )

otherwise.
We now review briefly the basic techniques for obtaining the mono-

dromy of renormalized integrals; a fuller discussion is given in [1].
These are based on the important remark that evaluation by β commutes
with analytic continuation in the variables Ax^\ for any α e &(N + 1 , N — 1)
and any ηCΩN+ί9ηΦφ,wε have

/[JS?*(α) Φfo)] = JSP/ («) [ / φ(,)] . (5.4.4)

Now for any discontinuity operator a = a{if) we obtain from 5.3 a
formula

&*{a) Φ(η) = Σ {.2*{a)\xΦiχ), (5.4.5)
X

where the matrix elements £f*χ depend on λ, and are analytic at the
point λt = 0,1 ^ i: ̂  N. If we expand these matrix elements in Taylor

4 Coramun. math. Phys., Vol. 18
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series, apply # to (5.4.5), and use (5.4.4) we obtain an expression for
&$ (a) ίcfl ΦO/)] a s a (possibly infinite) linear combination of functions
f[_M Φ(r\)~\, where M is a monomial in the λf' s. By multiplying (5.4.5)
by M before applying / we obtain a similar expression for S^β\_/MΦ (ή)~\.
Thus to determine the representation J% we need only find the linear
relations between the functions f[M Φ(ηJ].

Lemma 5.4.6. Let M = ^[/^(m^O) be any monomial, and take

ηCΩN+1,ηή=φ. Then

a) /[MΦ(ι,)]=0, if f
1

b) </[AΦ(ΏJV+I)] = P(A\ where P is a polynomial in {A^} which is
independent of k;

c) /[λ*Φ(ι?)]=O, if ί Φ f l N + 1 .

Proof From (5.4.0) and the symmetry property of β we have

~ \ if, for some fe, mf = <5ik

otherwise.

Then a) and b) follow directly from (5.4.1) (we observe that any Φ(η)
is analytic at λ{ — 0 except for the factor Γ(μ)). From b) we have, for any

this, combined with (5.4.3), proves c).
We thus see that the determinations of F(A) span a finite-dimensional

vector space Vβ spanned by the 2N vectors

i f rjC

if , =

We have, arguing as above, that

where v$(£f\ and Uβ(£f)χ are given by (5.3.10)—(5.3.13) for η,χ + φ and,
for η or χ = φ, by

j ,
) ) H { ^ - , - ) . W , (5.4.8)

= 0 for all ^ . (5.4.9)
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An argument similar to that of 5.3 shows that all vectors {Ξ(η)\ηCΩN+1}
are linearly independent; thus the dimension of Vf is 2N, and (5.3.10)-
(5.3.13) with (5.4.7)-(5.4.9) give J2> .

§ 6. The Case 4 in which the Invariants are not Algebraically
Independent

6.1. The Transformation of the Integral

In this section we show how in the case N ^ m + 2 the momentum
space integral (2.2) may be represented as a specialization of the generic
integral (2.5).

We begin by making the inversion compactification of momentum
space [15]. Embed <Cm in P m + 1 by mapping

into (k\k,l) = (zo,z,zm+ί)eΨm+ι

where zt O ^ i ^ m + 1 denote the coordinates of a point in P m + 1 . The
transformed integral may be written

ft "1 T(ί ^{BM) ft P^H"1 T(z)(zof ~m (6.1.1)
7 = 1

where
m

j j jzm+1+2z.kj + z0 for l^jZN. (6.1.3)

(6.1.1) bears an evident relation to the generic integral (2.5) for r = N,
s = m + 1 which will be elaborated below.

We denote by τ = <C{s+1)N the space of the coefficients of the linear
forms Z; in (2.5), and by p ^ = c ( s + 1 ) ( s + 2 ) / 2 the space of the coefficients
of the quadratic form B. Let t0 e T be a point such as discussed in Re-
mark 3.4.4 (C), i.e. l}i = #<*>, where fc(0) = 1, k(ΐ}< k{i + 1), and
0 < Ci <̂  C2 < *' < CN F o r 1C β with |χ| ^ s we define

L(χ) = {(/?5): the intersection {zeΨs: B(z) = 0 l}(z) = 0jeχ}

is singular} CT xW

and let L = uL(χ). From (6.1.3) it is evident that any path with base point

{ 1 1 m 1

kj = — (C,,..., C7) m,2 = ζf+1) - - r Σ Cf [in the space of the variables
2 4 fc=1 J

/c,., m; may be considered as a path in T with base point t0. (Note that by
suitable choice of ζ{ and k(ί) we may arrange to have m) > 0 for all 7.)
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Therefore our problem is to determine the action of ^ ( Γ x ^ J - L ;
(ίo,^)) on V(N,s), the vector space of germs of the integral. We note
that the integral (6.1.1) may be extended to a function on T x W by
allowing the coefficients of the /7 to vary in Tand replacing Bx by an arbi-
trary B. We will show that the action of any element of πjL(T x {B^ — L;
( ίo,^)) may be realized also as the action of a suitable element of
^({^o} x W —£;(£() >#i))> i e by varying the coefficients of B while
keeping the coefficients of the /,- fixed. The action of ^({ίo} xW — L;
(ί0, Bt)) may be deduced from the results of § 4 on the generic integral.

Theorem 6.1.4. The natural map

is onto.

Proof. This theorem is an immediate application of Lemma 6.1.5
below since the irreducible components L(χ) of L are given by poly-
nomial equations of positive degree in B.

Let 7\ =<CWl, T2=<CΠ2 be two spaces of nx,n2 complex variables
respectively. We consider an algebraic variety N,

given as a union of irreducible components JVα,

N β = { ( ί 1 , ί 2 ) : / β ( ί 1 , ί 2 ) = 0},

where fa is a polynomial in tu t2 of positive degree in tx.

Lemma 6.1.5. Let (tlo,t2o) be a generic point in Tx x T2. Then the
natural injection

is onto.

Proof. Let Tί=Ψrlί denote the projective compactification of Tu and
Tao = Ti — 7i the hyperplane at infinity in this space. We have trivially a
commutative diagram

x {t20} - i V u T ^ ; (t 1 0, ί 2 0 ) ) ^ ^ ( ^ x T2 -Nu^ x T2); (ί 1 0, t20))

where the vertical maps are isomorphisms. The assertion of the lemma is
thus equivalent to the assertion that j ^ is onto.
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To prove that j# is onto we make use of Hironaka's theory of disin-
gularization ([16], cf. also [17]). According to this theory we may find a
pair Y, S together with a map p: 7-> T2 such that

a) Y is an algebraic manifold of complex dimension n1+n2,
b) S is an algebraic subvariety of Y in general position in Y,
c) there is a biholomorphic map

d) p is a proper surjective algebraic map such that on 7 —

where q:TίxT2-+T2 is the natural projection. Note that from c) and
d) we obtain isomorphisms f^, /^ such that the following diagram
commutes

; (f10, ί20)) ^%(f x x T2 - NυiTn x Γ2); (ί10, ί2o))

Our object is now to prove that fc^ is onto.
Denote by A C T2 the algebraic subvariety of T2 defined by

A = {(ί2): S n p " 1 ^ ) is not in general position in p- 1(ί2)}

We construct by means of the shadow method ([18], p. 32) a cut C
bounding on A in T2 such that T2 — C is simply connected and contains
ί20. Set 5 = /?~1(^), D = /?-1(C)c7. Our assertion that k^ is onto will
follow from

i) the fact that the natural injection

is onto, together with
ii) the isomorphism

The isomorphism is an immediate consequence of the ambiant
isotopy theorem ([15]) which implies the triviality of the fibre space
Y — SKJD, p over T2 — C. For (i) we must show that any oceπ^Y — S;
/~ 1 (ί 1 0 ,ί 2 0 )) has a representative α which does not intersect D. To
construct α take any representative α' of α. By modifying αr infinitesimally
if necessary we can arrange that α' intersects D transversely in a finite
number of points. Now

DnS= (J (/Γ
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Fig. 9. The construction of the cut

is of codimension two in D, since our condition that fa have positive
degree in tx for all α implies that p~ί(t2)nS is of codimension two in
p " 1 ^ ) for all t2 not in some subset of codimension ^ 4 in T2. This means
that D - Dn S is connected and for each point of αΊ nDwe may construct
a path in D to a point of B. α is then constructed in the way indicated in
Fig. 9 which illustrates the case in which there is one intersection. This
completes the proof of the lemma and hence of Theorem 6.1.4.

Theorem 6.1.4 reduces our problem to the study of (6.1.1) for variable
B and fixed {/,} = ίo Our fundamental group is then ^({i0} xW-L;
(ί0, B^). The general discussion in § 3 gives us a presentation of
πi(Oo} x W — L\ (t0, Bo)) where Bo is positive definite. We identify these
groups by means of the isomorphism induced by conjugation with the
standard path from Bo to Bx. Our fundamental group is thus <&(N9s)
(s = m +1).

To write (6.1.1) as a specialization of the generic integral (2.5) we use
the residue theorem of Leray to replace δ(B(z)) by [B(z)]"1 with a
corresponding change of the contour of integration to a coboundary.
The resulting integral is a specialization of (2.5) with

λf = - 1 l^ί^N μ = 1 .

The construction of the monodromy representation oϊ@(N, s), ££ (λ\
is obtained as follows: First we embed #(]V, 5) into &(N) by means of the
homomorphism

where ίfκ is the signature obtained from Sf by rotating the subsets ρl9 ρ2,
ρ3, ρ4 clockwise (i.e. ρf = ρ3 etc.). Then we take the generic representation
of #(JV) and restrict it to iR^{N,s)C^{N). There will be no confusion
if in what follows we identify ίR&{N, s) with 9(N9 s). The use of iR rather
than the evident homomorphism ί:α(«^)->α(y) discussed in 4.5 is
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purely a matter of convenience to avoid the necessity for a change of the
basis in which we have given the representation of 9(N). &{N, s) C &{N)
is with this convention the subgroup generated by those signatures £f
which contain a reduced signature 3~χχ c Ω, \χ\ = s of the form

r l Φ {/eχ:|χn(/,ΛΓ||even}
χ \{/'eχ:|χn(/;iV]|odd} φ

This condition is determined by the choice of t0 (Remark 3.4.4 (C)). The
constants X(χ) are given by

iΦx

Note that a signature Sf = I * 41 corresponding to a point of the
W3 Qi)

Landau variety L(χ) will have χ = ρx uρ2-
The physical sheet is obtained by taking as contour of integration in

(6.1.1) the real section of {B(z) = 0}, and the corresponding contour in the
generic integral. Comparison with Appendix A shows that when this
contour is deformed to give the analytic continuation along the standard
path from Bx to Bo it becomes the contour γ0 of Definition A.7. Then
from Theorem A.2 we obtain the physical sheet conditions

a\ * 4 \Ψ = 0 unless ρx or ρ2 = φ
\Q* Qil

(in this equation we have already taken into account the rotation of the
signature). In the space of the generic representation these conditions
uniquely characterize Ψ and enable us to make the identification

Ψ = Θ(φ).

6.2. Specialization of Parameters - Case 4

The process of specializing the λ9s in the case of non-independent
invariants is made somewhat difficult by the rather complicated restric-
tions on admissibility of signatures which arise from the positional
characteristic. To study this process we need to give some combinatorial
definitions and results. Proofs of the results will be omitted, they are
straightforward although tedious. The reader is advised, however, to
follow the discussion by applying it to a special case (say N = 6, m = 3).
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Definition 6.2.1. For any χCΩ, define ρ^χ), i = l, ...4, by

Qiix) = {/eχ I |χn(/, ΛΓ]|even}

^ ( Z ) = 0' £ X I lχπ(/, ΛΠI even} .

Here, as usual, (/, AT] = {/ + 1, ... AT} ((AT,iV] = </>); compare with
Remark 3.4.4 (C).

Definition 6.2.2. A Woc/c b c Ω is a nonempty sequence of con-
secutive integers. The block sequence for a set ψCΩ is the (unique)
sequence b l 9 . . . i?fc of blocks such that

1 ebu m a x j j e b j = min{/eb f + 1} — 1,

for all i = l, ...k — 1, and ip = b f c ub f e _ 2 u. . . . We write b(ψ) = k.

Definition 6.2.3. We wish to define two order relations written <
and -<, on the subsets of Ω.

a) We write χ± <χ2 if either \χt\ < \χ2\ or \χt\ = \χ2\ and χ1 preceeds
χ2 lexicographically when written as a sequence of increasing integers.

b) For ψCΩ, let bu ... bk be the block sequence for φ, let j i be the
smallest element of bh z = l, ...fc, and write η(ψ) = {/l5 .. A} Then
Ψι<ψ2 iff ί/(t£>i)<77OP2) (in the sense of a) above).

Definition 6.2.4. For χ C β ^ (i.e., Nφχ), define
Lemma 6.2.5. a) for χ C ΩN, b[μ(χf] = \χ\.
b) If Xi, XiCΩN, then Xl <χ2 implies μ{χi)<μ{χ2).

c)

Corollary 6.2.6. The mapping χ-^μ(χ) is a bijective correspondence
between {χCΩN\ |χ| = s} and {ψ C ΩN | b(φ) = s}.

Definition 6.2.7. We define s/(N9 s) = {ψCΩN\ b(ψ) ^ s}.

Theorem 6.2.8. Take χCΩN. Then, for all values of the parameters λ,
we have

b)ul X Q4[X)) = 0 unless ψes/(N,\χ\)
\Q3ix) Φ Iψ

where u is given by (4.5.8). (Recall that we use as basis for the generic
representation {Θ(ψ) | ψ C ΩN}.)
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We now turn to the specialization of the parameters λ. As in § 5, we
must work in a co-ordinate system in which the basis vectors have limits
under the specialization.

Definition 6.2.9. For any χCΩN with \χ\ ^ 5 define

ψ if χ = φ

Ψ if χ + φ.
\β3ω Φ

Remark 0.2.10. The limiting vectors lim Ξ(χ) exist.

Lemma 6.2.11. For any ψCΩN, b(ψ)^s9 the limiting vectors

lim Θ(ψ)

exist.

Proof. We note first that the vector Ξ(χ) is proportional to
. 4 . with a coefficient of proportionality which is non-zero

Qs(x) Φ I
even in the λj-> — 1 limit. Then if we write

sω= Σ τ

it follows from Theorem 6.2.8 that Tχψ is triangular and that the "diagonal
elements" Tχμ{χ) are non-zero for all λ. Thus T " 1 exists and is continuous
in λ (in particular, at λj = — 1); this implies the lemma.

Remark 6.2.12. It follows from Lemma 6.2.11 that {θ(ψ) \ b(ψ) ^ s}
span the vector space V(N, s) in the λj-+ — l limit, and that the action of
the fundamental group on the {Θ(ψ)} is given by specializing the A's in
the generic formulae (4.5.8) and (4.5.9), i.e.

To complete the analysis it remains only to determine the linear
relations among the <9's in the limit, and hence the dimension of V(N, s).
We first observe that the Landau curves L(χ), with \χ\ = s = m + 1 , are

( ϊ Q (ϊ)\
4 I must vanish.

.03 (X) Φ I

Lemma 6.2.13. The linear relations
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with \χ\ = s, χ C ΩN, are independent. Moreover, they enable us to express
each vector Θ(ψ\ b(ψ) = s, as a linear combination of vectors Θ(ψ'\
b{tp')<s.

Proof. This follows from the triangularity properties established in
Theorem 6.2.8.

We need one more combinatoric result:

Lemma 6.2.14. For any χCΩ with \χ\ ^s,Neχ, we have

QΛx)\ = 0 unless Ψ^μ(χ-{N})

Q2(X)K Φ0 if ψ = μ(χ

Then we have finally

Theorem 6.2.15. The vectors {Θ(ψ)\b(ψ) < s} form a basis for V(N,s).

Proof We know from Lemma 6.2.13 that these vectors span F(JV, 5).
Now suppose they are linearly dependent:

φ = Σ cvθ{ψy=o9
b(ψ)<s

with not all coefficients cψ = 0. F r o m the triangularity established in

Lemma 6.2.14 there is a signature Sf = Γ1,] , Ί of the type con-

sidered there such that (v(£f\ Φ)ΦO. From Lemma 5.2.9 this means
that the curve L(χ) is singular on Φ, and hence that Φ Φ 0.

Corollary 6.2.16. The dimension of V(N, s) is d(N, s-l) = d(N, m).

We note that d(N, m) follows as an upper bound for the dimension
of V(N, s) from the homology decomposition theorem of Fotiadi et al. [15].

Appendix A: The Integration Cycle γQ

In this appendix we study the behavior of the integral (2.5) taken
over a certain integration contour y0. That is, writing

P(χ)ΠUj(χ)YJ

G(B,x)= g ^ — ,
we study

HJB)=$G(B,xγη(x). (A.1)
To

The contour y0 is such that Hγo(B0) is well defined. Assume that the signs
of the linear forms lj are chosen so that, for some Ye F s , /,(Y) > 0, j = 1,... r.
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Then we have

Theorem A. 2. Let £f = Γ 1 ρ 4 ) be a signature for (A.I), let a(Sf)
\Qs QiJ

s)) be the corresponding discontinuity operator, and let y0 be
given as in Definition A.7 below. Then

a signature ¥ = ( ̂  ). Then Theorem A.2 implies a{Sf) Hγo φ 0.

iff Q?, and ρ 4 are non-empty.

Corollary A. 3. Hyo is singular on every curve M(χ).

Proof. From Lemma 3.3.9 we see that for any χ with |χ| ^ s there is

( X '

\Φ Qi)
We begin with several preliminary results

Lemma A. 4. Let B2 e M(χ) be a real non-singular point ofM, let Bo,
B1be positive definite, and let OLO,OL1 be the elementary loops around B2

based on Bo and Bx respectively, defined using the anti-clockwise convention.
Let β(t),O^t^l, be a path from Bo to Bl9 with β(t) positive definite
for all t. Then<xo = β-ί<xίβ.

Proof This follows immediately from Lemma 3.3.2.
Now choose a point YeΨs such that lj(Y)>0,7 = 1,... r. We take

coordinates in which Y = (0,... 0,1); with this choice we write any point
x e Ψs in the form x = (y, xs+ x), with y = (yt,... ys). Let A be a positive
definite form on <CS, and define the quadratic form B(A, R) on P s by

In suitable coordinates, we have

B(A, R) = Σ *ifi ~ £*s+1> ai > 0 (A.5)
1

Let A0(y) = Σ yf> s o t h a t Bo = ̂ {Ao, - 1).
1

Now we may assume that the hyperplane {*s+i = 0} is in general
position with respect to the surfaces {/,(*) = 0}. The following lemma
is easily verified.

Lemma A. 6. Take χCΩ with \χ\ ^ s , and xe l(χ) with xs+ x Φ0. Then
for any ηCχ with η^Φ there is a B(A, R) of the form (A.5), with R>0,
satisfyinq

B(A,R){x) = 0

with Tj>0 for j s η and τ 7 - < 0 for jeχ — η.
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We now turn to the definition of y0. Note that an acceptable contour
for the integral (A.I) is any closed contour on which G is single valued.
We usually specify such an object by several s (real)-dimensional cells,
with identifications along their boundaries, and a determination of G
on each. The values of G on two identified boundaries must agree.

Definition A. 7. Take 0 < ε <̂  1, and define / : R-*1R by

,, v fe if M ύ 1f(u) = <
[1+ε — \u\ if |w |>l.

For A as above, and R <0, define a contour γ(A, R) to consist of two
cells,

c± = «[i ± /(«)] [ - R/aJ* zί,... [j ± f(uf] [ - R/asγ zs,
S

zί9... ZSG1R, U = Σzf, and

joined along their common boundary u = l+ε. Note Yec+nc__; we
choose determinations G+(B(Λ, R), Y) on c+ which satisfy

and which depend continuously on A.
Now it is easily verified that HγU R)(B(A, R)) is analytic at all points

B{A, R) with R < 0. W<? de/ϊm? γ0 = γ(A0, -1). A typical contour γ(A, R)
is shown in Fig. 10 for the case 5 = 1.

We now turn to Theorem A.2. We will sketch the proof of this theorem
only for certain signatures (the proof for the remaining signatures is
somewhat more complicated). However, the results which we discuss
suffice for Corollary A.3 and for the applications of § 6.

Case 1. The leading curve M(φ).
(Ω φ\

For M(φ) we prove Theorem A.2 only for the signature 9* = I
\Φ Φl

Consider the line in the parameter space {B{A,R)\ReC}. The point
B(A,0) in this line is on M(Sf\ and the cycle y(A,R\ for R<0, is the
vanishing cycle for this singularity. In particular γ0 is the vanishing
cycle; thus a(9)HγoΦ0.

Case 2. The curve M(χ), \χ\ = 1.
Let x = (y, 1) be an arbitrary point of l(χ) not on {x s + 1=0}; let

ρ1 = (/|/J(Λ;)>0},ρ2 = {/Ί'7 M<0} . We will prove Theorem A.2 for an

arbitrary signature 9 = I 1 4 with ρ3 Φ φ.
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ji/HΓ

Fig. 10. The contour y(A, R)

Now by Lemma A.6 there is a quadratic form A and a positive num-
ber Ro such that B(A, Ro) e M(έ?). Consider the line in the parameter
space given by {B(A,R)\Re<E}, and construct an elementary loop
{B(A, R(t))\0 S t S 1} around B{A, Ro), with R(0) = R(l) = - 1 , using the
anticlockwise convention. Using Lemma A.4, we see that we wish to
prove that the discontinuity of Hγ{A _ί)(B(A, — 1)), when continued
around this loop, is zero if ρ4 =t= φ.

We will give only a brief sketch of this proof (the details are compli-
cated and unilluminating). Note that for some ί o , 0 < ί o < l , we have
R(to)>Ro. One constructs (fairly explicitly) a contour (5(ί)(0:gί^ί0),
with <5(0) = γ(A, -1), in such a way that Hδ{t)(B(A, R(t))) is the analytic
continuation of Hy{A _ 1 } along the path B(A, R(ή). Now for B = B(A,R(t0))
the vanishing cycle for M(£f) is

if

/J(x)<0 if jeρ3, and B(x)<0}.

One may calculate explicitly the Kronecker index of e(Sf) and δ(t0) and
show that it vanishes if ρ4 φ φ. This completes the proof.
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Appendix B. The Word at Infinity in »(ΛΓ, N—1)

In this appendix we derive an explicit expression for the word at
infinity in the group &{N, N — 1), the group used to study analytic
properties when there are no second kind singularities (cf. 5.2). Recall
that the word at infinity w^ is the group element defined by a loop in
any generic line which circles the point at infinity counterclockwise,
or, equivalently, circles all finite singular points clockwise.

Take any i e Ω, and consider signatures of the form

) , (B.I)
is Άiί

3

with ηiC{k:k<z}, η2c{k:k>/}, and (J η} = Ω{. We define an integer

valued function pf on these signatures by

L e m m a B. 2 . The element βi — otί. .)is given by any product of the

\Φ Φ)
2Λr~1 elements α(^) , where ίf is of the form (B.I), in which the order of
the factors is such that pi{^>\)<pi{^2) implies that oc(&[) appears to the
left of α(^ 2 ) in t n e product.

Proof One obtains an expansion of βt as a product of the indicated
elements by repeated application of Definition 3.3.21. Then it may be
checked that the order of any two noncommuting factors is uniquely
and correctly determined by the stated rule.

Theorem B. 3 The word at infinity in @(N, N — 1) is given by

Proof We consider the generic line B(t) = B'o - tB', where the matrix
B{t) is given by B{t)u = 1 - tb^ B(t)jk = εjk for; Φ k, and the real numbers
bj, εjk satisfy

εjk
<l. (B.4)

(Note that the base point B'o is in the Euclidean region and so may be
used in place of Bo (cf. Lemma A.4).) This line intersects M(χ) in \χ'\



Monodromy Rings 63

points given by t = ^(χ), i e χ\ where

ti(x) = Kx+ Σ -Λr + 0 ( ε 3 ) ' i f

Moreover, at ί = ίf(χ),

l + O(ε)

) , V fc e χ' - {i},

χ)λ Z) = - 2είfe + O(β2), V k e χ .

From these results we can compute the signatures of the finite singular
points in this line and hence the corresponding expression for w " 1 as
a product of generators cc(Sf). Note that these points fall into N clusters
near the points bf1 l^i^N and therefore the expression for w~ * may
be written as a corresponding product of N factors. Each of these factors
is, for any choice of the bj9 εik satisfying (B.4), a product of the form des-
cribed in Lemma B.2 for the corresponding index i and hence is equal
to ft.
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