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Abstract. The monodromy rings of self-energy graphs, with two vertices and an
arbitrary number of connecting lines, are determined.

§ 1. Introduction

This paper is the first of a series of publications in which we hope to
elucidate in a systematic way the properties of Feynman integrals. The
motivation for this work is clear: we hope to develop sufficiently the
methods of investigating functions of several complex variables defined
by integrals to give a basis for the determination of the analytic structure
of the S-matrix itself. This is admittedly not an easy task and one whose
outcome we cannot guarantee. An ideal research program should be
carried out in three steps:

I) The individual contributions of each perturbation order should
be separately investigated. These are functions of the Nilsson class1 and
therefore their analytic structure admits a simple qualitative descrip-
tion — to each function corresponds a certain group, the fundamental
group of its domain, and a finite dimensional representation of this group
by linear transformations of the vector space spanned by the determina-
tions of the function in the neighbourhood of a nonsingular point. This
representation may be extended to a representation of the group ring
of the fundamental group which we term the monodromy ring of the
function2. These rings are to be explicitly determined.

This point of the program is well under way and has been completed
for the single loop Feynman relaίivistic amplitudes (FRA) and for the
class of self-energy FRA considered in the present paper.

* Research sponsored by the Air Force Office of Scientific Research, Office of Aero-
space Research, United States Air Force, under AFOSR Grant 68-1365.

1 See §3.3.
2 These concepts are developed in detail in § 2.
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It is important to know to what extent a function is defined by its
monodromy ring. This question was posed already by Riemann who
initiated the qualitative approach to the theory of functions. For func-
tions of a single complex variable Riemann's problem has been given a
complete and beautiful solution [1]:

Given a representation of the group ring of the fundamental group
of the complex plane minus a finite set of points, which is finite dimen-
sional and has a cyclic vector, there exist n functions having these points
as branch points such that

a) These functions have the given representation as their mono-
dromy ring.

b) They are linearly independent over the field of rational functions.
c) Any function having the given representation as its monodromy

ring is a linear combination of the n basic functions with rational func-
tions as coefficients.

We expect that this theorem remains valid also for functions of
several complex variables.

II) The second step is heuristic.
The aim is to determine the simplest possible analytic structure for

the S-matrix which would be consistent with known physical principles.
For an account of the work which has been done in this direction we
refer to [2]. We remark only that the unitarity condition dictates that
the S-matrix must have a very complicated structure. The close cor-
respondence between unitarity integrals and Feynman integrals indicates
that the S-matrix has an analytic structure which is closely related to that
of the terms in the perturbation series. We expect that the techniques
developed in I) will be essential to obtain the full implication of the
unitarity condition and so to give a precise statement of the analytic
structure of the S-matrix.

III) The problem of constructing an S-matrix which has the structure
suggested by II) must be solved. This problem can be regarded as a far-
reaching generalization of the problem of Riemann mentioned above.

Even in the case in which a complete solution of I) is obtained, a
complete solution of II), III) would almost certainly remain out of the
question. However, a partial solution - which would be in effect an
extension of the original calculational scheme of Mandelstam to deal
with many particle processes - would be of great interest.

We conclude this introduction with some remarks on the technical
ideas introduced in this paper.

a) In contrast with previous work aimed at the determination of the
monodromy rings of Feynman integrals [3,4], we are able to avoid the
use of homology theory. It was remarked already by Pham [4] that a
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knowledge of the fundamental group gives considerable information
about the Kronecker indices which must be determined in the homo-
logical method. We have found that taken together with the information
which is obtained by a purely local analysis in the integration space, the
fundamental group determines completely the monodromy ring. We
have no proof that this is the case for an arbitrary graph but it is not
necessary to know in advance that the method will be successful in order
to apply it.

b) We consider all the parameters which enter into the FRA as
independent complex variables. In this way we exploit the fact that the
FRA may be analytically continued in all these variables.

c) We use a device introduced by one of us (E. S.) in dealing with
renormalization theory whereby the ordinary Feynman propagators
(p2 — m2 + iε)"1 are replaced by (p2 — m2 + iε)~λ, λ complex. In this way
we achieve a double goal.

i) We are free of worries about divergent FRA. Renormalized FRA
can be obtained by the Speer method, and their analytic structure
determined.

ii) The λ variables - we introduce a different λ for each line - serve
to label the lines. In this way we can see clearly the influence of each line
in the whole structure. In particular we are able to state and prove a
prove a theorem which describes the effect of cutting one line of the
graph. If this theorem can be proved for an arbitrary graph it could play
a key role in the construction of the monodromy rings of complicated
graphs. For it would then be sufficient to construct the monodromy
rings of the complete graphs on an arbitrary number of vertices. (The
monodromy ring of a graph with multiple lines can be computed from
the monodromy ring of the corresponding graph without multiple lines
and the monodromy rings determined in the present paper.)

1.2. The Fundamental Group — General Theorems

For the definition of the fundamental group of a topological space
we refer to any standard text on topology, for example [5]. In this section
we cite a number of theorems on the fundamental group π^P™ — L; B)
of the complement in a projective space IPm over the field C of complex
numbers of an algebraic variety L of complex dimension m — 1. B denotes
the base point for the loops defining π t.

Definition 1.2.1. A line / C IPm is generic with respect to L if / intersects
L in a finite set of points equal in number to the degree a of L.

Theorem 1.2.2 (Picard-Severi). π^m-L\B) is generated by the
elements α l 5 ...,αd defined by elementary loops in £ around the points of
intersection of a generic line f through B with L (Fig. 1).
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(LfH)2

(LΠί)d

Fig. 1. The complex line /

Proof. See e.g. Pham [6].

Note that π1 (f ~ L B) is the quotient of the free group Fd on α 1 ? . . . , αd

by the normal subgroup generated by cq ... αd.
Definition 1.2.3 (Zariski). If OeP m -L, and N^Pm" 1 is a linear

subspace of IPm not containing O, the branch variety V ofL relative to O
is the intersection with N of the cone of singular (i.e. non-generic) lines
on O with respect to L. A plane π ~ F2 C lPm is generic with respect to L
if there is some point 0 E π such that if N is a linear subspace of Pm of
dimension m — 1 not containing 0, the line πnN is generic with respect
to the branch variety F of L relative to 0.

Theorem 1.2.4 (Zariski [7]). // π is generic with respect to L the
natural injection

i:π 1(π-L;jBHπ 1(lPm-L;£)

(which by 1.2.2 is onto) is an isomorphism.

Combining Zariski's theorem with the Picard-Severi theorem we
see that π^P"1 —L β) is a finitely generated group with generators
α l 5 . . . , αd and that all the relations on these generators may be found by
considering homotopies within a generic plane π on B.

Let π be generic for L. We may choose the base point B to be the point
O of Zariski's definition and the generic line / used to construct genera-
tors for πj(Pm — L; B} to be the line BQ0, where <20 e πn JV is any point
of πnN other than the s points Q1 ... Qsin which πnN intersects the
branch variety F of L relative to B. Denote by u a complex variable
parametrising πnN so that Qt corresponds to u — ut 0 rg i ̂  s. For
M = t = u 1 ? . . . M s , the line £<2(w) intersects L in d points P±(u\ ...,Pd(u). Let y
be a line segment in the ι/-plane connecting points R, S. We write y — {y(t}}
so R = y(O), S - γ(l). Then the motion of the points P^ΛO))... Pd(y(0)) of
intersection of BR with L into the points P^l))... Pd(y(l)) of BSnL
defined by continuously varying ί from 0 to 1 may be extended to a
motion which carries an arbitrary point of the line BR into a correspond-
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ing point of BS 3. The motion may be constructed so that B remains
fixed. It therefore defines an isomorphism

n,(BR - L; B)-+πi(BS -L B).

With the help of this construction we may assign to each piecewise linear
loop β on Qo in πniV an automorphism

h(β) : π^ - L; B)-^π^ - L; £) .

This automorphism depends only on the homotopy class of the loop β in
π^πnN- V\ Q0) For any αeπ^-L β) and βeπ^πnN- V; Q0) we
clearly have

i(α) = i(h(β)*)

where i denotes the injection i : π t(/ — L B) -> π1 (P
m — L B).

Theorem 1.2.5 (van Kampen [9]). The kernel of the injection i

is generated by the elements u,[h(β)vί\~l where

α e π^ - L; B); β e π^πnΛΓ - F; β0)

are arbitrary.

π^πnΛΓ— F; Q0) is generated by elements βι ..βs defined by
elementary loops around Ql ... βs. We may therefore combine Theo-
rem 1.2.5 with the remark following 1.2.2 to give:

Proposition 1.2.6. π^P™ — L B) is a finitely presented group — the
quotient of the free group Fd on generators α l s . . . αd by the normal subgroup
generated by

[In Proposition 1.2.6 h^j)^ as an element of Fd is not uniquely defined
but is understood to be any element of Fd which maps onto h(βj)ccι con-
sidered as an element of τι^(f — L; β).]

We refer to the relations (x i[h(βj)oίi']~1 =1, l^i^d as the van
Kampen relations for the branch point. If Qj is the intersection with
πniV of the line BP joining B to a singular point P of Lwe may also refer
to these relations as the van Kampen relations for the singular point P.

3 The practised reader will recognize this as an ambiant isotopy [8].
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Remark. The ambiant isotopy construction may be used to assign
uniquely to each β e π^πnN — V\ Q0) an automorphism h'(β) of the free
group Fd by identifying this group with π^-LuB). Then in 1.2.6 we
could write α^'(/?,-)αj -1. It is interesting to note that the automorphisms
h'(β) map each generator αf into a conjugate of some other generator α,-
and map o^ ... αd into itself. They therefore define elements of the braid
group Bd on d braids [10].

Fig. 2. The anticlockwise convention

In the application of the above results to the study of Feynman
integrals we are concerned with a variety L defined by a polynomial
whose coefficients are real. We denote by LrClPm(R) the real part of L,
Lr = Pm(^)nL. As a set of real points Lr may have components of
varying topological dimension. However, the set Lr — S = M (S the set of
singular points of L), which in our case will always be nonempty is a
manifold of real dimension m — 1. We denote by Mt 1 g i ̂  c its connected
components. Choose a real base point B. With each point PeM we
associate the element α(P) e πt(Pm — L; B) defined by an elementary loop
in the complex line BP which follows the real line interval BP except for
small anticlockwise detours to avoid the intersections of BP with L
interior to BP and circles L anticlockwise at P (Fig. 2). Let X be a con-
nected subset of M. We say that X is good with respect to B if any two
points P, P' in X may be connected by a path y = {y(f)} in M such that
as ί runs from 0 to 1 no complex intersection of BP = #y(0) crosses the
interval By(t). We then have α(P) = α(P'), i.e. we may define αpf) = α(P)
for any P e X. An optimal choice of base point B is clearly one such that
each component Mf 1 ̂  i ̂  c is good with respect to B. For the Landau
variety of a single loop diagram such a base point exists [11]. For the
multi-loop graphs studied in the present paper the Landau varieties do
not admit such a choice of base point. However, we have been able to
choose B so that a large number of the components M£ are good with
respect to B. This choice is successful in the sense that the corresponding
generators α(MJ generate πt(Pm — L\B) and such that the relations on
these generators obtained by writing down van Kampen relations for
certain real branch points completely define the group. Note that the
completeness of the set of elements {α(Mί)} is essential for our purpose,
but that the completeness of the set of relations which we write down is
not essential. It is sufficient to have sufficient relations to reconstruct
uniquely the representation <£ of the fundamental group.
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A Landau variety L is a reducible algebraic variety. The singular
points of a generic plane section π of L are therefore expected to be of
the following types

(i) transverse intersection,
(ii) tacnode,

(iii) cusp.

We are interested particularly in real singular points (since we try to
avoid having to write down van Kampen relations for complex singular
points). As a singular point of the real section a transverse intersection
or node can appear either as a transverse intersection of two branches of
Lr (crunode) or as an isolated realpoint (acnode). Since we wish to con-
sider only van Kampen relations which can be written down as relations
on elements of the fundamental group defined by elementary loops
around points of Lr we do not consider the acnode case. This gives us the
three cases illustrated in Figs. 3,4, 5. In the neighbourhood of the singular
point P local coordinates M I ? u2 may be chosen so that L has local
equation

(i) (M! - u2) (MI + u2) = 0,
(ii) (Uι-u2)u2 = Q,

(iii) u\ - ul = 0.

We choose a base point B such that P is the only singular point of L
on BP and such that BP does not touch L, i.e. we choose B to be a point
O satisfying the conditions of 1.2.3. We also choose B so that in cases (ii),
(iii) B stands in the relative position to the real section of L in the neigh-
bourhood of P indicated in Figs. 4 and 5. Then if U is a sufficiently small
neighbourhood of P the connected components Kt of l/n(Lr —P) are
good with respect to B. We denote by αί = α(Xί) the corresponding
elements of the fundamental group constructed by the anticlockwise
convention, the labelling being carried out as shown in the figures. We
will work out in detail the relations between these generators for the
tacnode. Choose as the generic line / the line BP' for some P' e Kί9 and
let πn N be a line defined as in the general discussion preceding the state-
ment of the van Kampen theorem (Fig. 6). Let πnN intersect BP,
BP' = 1 in Q, QQ. The construction of the van Kampen theorem now
gives us two kinds of relations

(a) identifications obtained by taking for the path y in πnN a path
from go = R to a point S on the opposite side of β circling Q anticlock-
wise. By following the motion of the intersections of By(t) with L as t
traces this path we can express the generators defined by B S in terms of
those defined by f . For the remaining a — 2 generators this results in
trivial identifications but we do obtain two non-trivial relations ex-
pressing α3, α4 in terms of α1? α2;
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Fig. 3. Crunode

Fig. 4. Tacnode*

Fig. 5. Cusp

(b) the van Kampen relations for P obtained by taking a loop β around
Q in πnN.

The task of following the motion of the loops in By(t) obtained by
deformation of α1? α2 may be reduced to successive applications of

* The labels oq and α2 in Fig. 4 should be interchanged.
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the generic line {-̂ ^ / j ^the singular line
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Fig. 6. The neighbourhood of a tacnode

Fig. 7. z-plane

Lemma 1.2.7 (Fig. 7). Let z1(u\ z2(u) be two points of the complex
z-plane depending continuously on a parameter u. Suppose that for u = 1,0
the points are real and satisfy

z1(0)<z2(0), z 2(l)<z 1(l).

Suppose also that Im(z2(w) — z^w)) is positive for any u, 0 < u < 1 (so that
the points circle just once). Choose a base point B far away on the negative
real axis and denote by 0^(0), α2(0); 0^(1), α2(l) elements of πt((C2 — {zj
u{z2}) defined by loops around z1 ?z2 constructed according to the anti-
clockwise convention. Then as u varies from 0 to 1 0^(0), α2(0) are carried
into

αi (0) = «!(!), (1.2.8)

α'2(0) = ̂ \l)(x2(l)^(l). (1.2.9)
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β

Fig. 8. The complex li

Proof. (1.2.8) is evident. For (1.2.9) we note that the loop α1(0)α2(0)
is mapped into the loop 0^(1)0^(1), i.e.

α/ι(0)α'2(0) =
or

αi(0) =
in view of (1.2.9).

To obtain the identification relations for the tacnode we write the
path γ as the union of paths y l 5 y2, arcs circling one quarter the way
round Q (Fig. 8). Lemma 1.2.7 gives the relations between the generators
in the lines #7ι(0), Byl(l) and between those on Bγ2(ty = Bγl(ϊ) and
By2(l). Hence we obtain

oq = α4 1α 3α 4, (1.2.10)

α2 - (α3α4)~1α4(α3α4) . (1.2.11)

To obtain the van Kampen relations we write down the identification
relations obtained by linking S to R by the semicircular arc β — y

α3 = α 2

1 α 1 α 2 , (1.2.12)

α4 = (α1α2)~1α2(α1α2) , (1.2.13)

and eliminate α3, α4 to give

«ι =(α1α2)"1α2

1(α1α2)(α2

1α1α2)(α1α2)~1α2(α1α2),

α2 = (α 1α 2)~ 2α 2(α 1α 2) 2.

The first of these relations is a consequence of the second which may
be written

(αια2)
2 = (α2αι)

2. (1.2.14)

In view of (1.2.14), (1.2.13) simplifies to

α4 = α 1α 2α7 1 . (1.2.15)

If two elements α1? α2 of a group satisfy (1.2.14) we say that they bί-
commute and write oq^ α2.

The relations between generators in the crunode and cusp cases are
worked out in the same way (again using Lemma 1.2.7). The results are
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Table. Relations between group elements in the neighbourhood of a singular point

Singularity type Identification relations van Kampen relation

Crunode (Fig. 3) tfi=«3 «2 = α4 α1α2 = α2αι
Tacnode (Fig. 4) α3 = α 2~ 1α 1α 2 α4 = α 1 α 2 αf 1 («ια2)

2 =(α2αj2

Cusp (Fig. 5) — αj α2 oq = α2 αt α2

given in Table 1. Note that in the cuspidal case α3, α4 are elements
defined by loops around complex points of L so we do not write down
the identification relations in this case.

§ 2. Determination of the Monodromy Rings in the Generic Case

2.1. The Feynman Integrals Associated with the Graphs GN (Fig. 9)

In a space-time of dimension m the Feynman integral associated with
GN in a theory in which all particles have spin 0 is given as a function
of the energy s0 and the masses st 1 ̂  i g N of the exchanged particles by
the integral

dmk

(2.1.0) can be written in the parametric form

The integration region Δ is the simplex

ί *
Δ =<(α):α ί^0 V z , £ α t - 1 V (2.1.2)

), D(s, α) are the Symanzik functions
N

d(a)= X oq ...α^i^. + i . . .α^, (2.1.3)

(2.1.4)

kN

Fig. 9. The self-energy graph GN
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The integral (2.1.0) is convergent only in the cases

m = 2, N arbitrary, (2.1.5)

m = 3, JV = 2. (2.1.6)

For the remaining values of m(^ 2) and N, the integral (2.1.0) diverges and
we must study the renormalized integral defined by a suitable renor-
malization procedure (see § 4).

(2.1.1) may be rewritten in a form in which the integrand is more
symmetric. Define

/9 ϊ 7Λ> (2 L7)

g(x)= Σ α Γ 1 , (2-1.8)
ί = 0

D'(s,α)=Σs, α ί . (2.1-9)

Then up to a sign

Σ αi-

where

J' = ί(α):αι.^0 l ^ i g N , X α£ = 1, 0(α) - ol . (2.1.11)
I i = l J

The integrand in (2.1.10) has the form

/ N \

<M Σ αί~l )/(α)dαo -..daN,
\i = l /

where /(α) is homogeneous in α of degree

so (2.1.10) can be rewritten as an integral in projective space [12] (again
up to a sign)

m n r / ί n ~ r / ~ n ~ r ιd(gW)*° ° η
- _ _ -

2 > [mα)]~(m/2)(JV~'1)"f/v
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η is the fundamental projective form

N

η=Σ (-l^M^o .-.dcίi-ί dai + 1 ...duN (2.1.13)
and ί=0

J" = {(α):α f ^0 l£i^N}cΊPN. (2.1.14)

In -order to study the monodromy ring of I(s) we choose a reference
point B = (1, ε, . . . , ε) in the space

Here ε is a positive number, sufficiently small so that B lies above the
normal threshold j/s^ = ]/rsl + - -f ]/s#, i.e.

J V 2 ε < l .

(2.1.12) is not an integral of standard form but it may be shown that the
ambiant isotopy component of -B for a suitable resolution of (2.1.12) into
standard form is the complement in CN+1 of the set

N + l

L= U A , (2.1-15)
ί = 0

where

Lf = {(s)} : Sf = 0} O ^ z ^ N , (2.1.16)

± |/^ = 0} (2.1.17)

Define <&N to be the fundamental group

9N = π,(€N + ί-LιB)

and VN to be the vector space spanned by germs of I(s) with centre B.
Then we have a representation4

N} = GL(d, <C) d = dim F^

defined by assigning to each loop on B the linear transformation of VN

induced by analytic continuation along this loop. JS? can evidently be
extended to a representation of the group ring (C(^N) of &N over the
complex field (E into L(VN). We wish to study the monodromy ring

It is important to note that the ambiant isotopy component of B is
completely determined by the location of the singularities of the integrand

The fact that d is finite is established in the course of our investigation.
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for I(s). It is thus natural to introduce the more general integral

<%(«)) Π «?•
[D'(α)]J

Δ"
^V+l

(2.1.18)

which again defines an analytic function on <CN+1 — L. The exponent of
D'(a) is determined by the requirement that the integrand be a project! ve
form. We obtain for arbitrary complex λi9 such that (2.1.18) is convergent,
a representation ^(λ) of the same group &N and a monodromy ring

s/N(λ) = &(λ)(<C(<yN)). (2.1.19)

We refer to the ring £#N(λ) associated with GN for generic /, (i.e. λt not
satisfying certain equations - in particular non-integral λt) as the generic
monodromy ring for GN. It turns out to have a very simple structure -
it is a complete matrix ring over a vector space of dimension 2^ — 1
(cf. §2.4). Nevertheless the ring ^N,m = 2 °f the original integral with
m = 2 can be obtained from £#N(λ) by specializing the λ( to the values λ°
appearing in (2.1.12). For I(s, λ\ regarded as a function defined on the
universal covering space of CN + 1 — L, is continuous in λ in the nhd. of
λ®, uniformly for s in any compact set. The specialization is carried out
in §3.

2.2. The Fundamental Group $N

We construct a set of elements which generate $N by choosing certain
representative loops on B in the space <CN + 1 — L. 3?N is the quotient of the
free group on these generators by the normal subgroup defined by the
van Kampen relations for singular points of L, nodes or tacnodes, lying
in or on the boundary of the region

We will need to write down explicitly only certain of these van Kampen
relations, since these turn out to give sufficient information to construct
the monodromy ring jtfN(λ).

In constructing loops to define elements of &N we follow the anti-
clockwise convention of § 1.2. (Fig. 2). The following components of
Lr — S are good with respect to the base point B chosen in § 2.1. (This is
strictly true only in the limit ε->0. For small finite ε a set of points whose
relative measure — >0 as ε— »0 must be deleted from the components.
However, this does not affect the presentation we obtain for <&N.)

X ] f i j \ . (2.2.1)
J Φ O J

(2.2.2)
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W w W

«(*>

Fig. 10. Tacnodal contact of L; and LN + 1

We write α(L?) = βίl^i^N, α(L^) = $} 1 g ι ̂  N. Also for any proper
subset χ of Ω = {1, . . ., N} any component of Lr — S contained in

for alii + - (2 2.3)

These components are separated only by transverse intersections so we
may make immediate use of the identification relations for a transverse
intersection (Fig. 3) and introduce one element α(χ) of ̂  defined by any
one of them.

Any real nonsingular point of L in the component Lf for some
i, 1 ̂  i ̂  N, can be joined in L{ to a point in L°} by a real path which inter-
sects the set of singular points of L only in nodal points or in tacnodal
points of the kind shown in Fig. 10. [In Fig. 10 the loop corresponding
to a point P of Lr is indicated by the line 5 P.] The identification relations
for a tacnode are simplified by the position of the base point B (B is not
in the symmetrical position considered in § 1.2) - the elements β'h β" of
&N defined by points of Lt on either side of the tacnode are the same.
Any real nonsingular point of L in Lt thus defines the same element of
<&N as a point in L?} : /?• = β" = βt. The remaining identification relation
obtained from the tacnode shown in Fig. 10 is

(2.2.4)

and the van Kampen relation is

Since the components L t of L intersect transversely 1 ̂  i ̂  N

Similarly we have

(2.2.6)

(2.2.7)

(but βt, β$ do not commute since L{ does not intersect the region L1^ used
to define jSg).
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«<zf

LN.ιί*2>

Fig. 11. Self-intersection of LN + i

Next we consider the real self-intersections of LN + 1 in the interior
of the region {(s): st>0 O^ί^N} (Fig. 11). These are nodal points.
We have already used the corresponding identification relations to define
the elements α(χ). We now write down the van Kampen relations. The
intersection

= < (s): st > 0 for all ί

's~o+ Σ ]/Si = Σ l/ί> Σ V*i= Σ
i e χ m χ i ieχ'mχ'2

(χf — Ω — χ) is non-empty unless χt C χ2 or χ2 C χt or χί uχ2 = Ω. Thus we
obtain the commutation relations

for all proper subsets χ l 5 χ2 °f ^ such that V (2.2.8)

Note that we have not named the elements of &N for regions of L0

other than the Li}

0 (i = 1 . . . AT). Neither have we written down the van
Kampen relations for tacnodes on L0. We will show below that the
elements α(χ), βh and β$ generate &N. The additional van Kampen
relations suffice to determine &N, but will not be required for the deter-
mination Of J^y.

Now let Q(ί) be the point

where the ̂  are positive and less than ε, and consider the (complex) line
t { given by

This line intersects L0^ at a real negative value z f. It intersects L(χ), for
i^χ, at a real positive value z(χ); moreover, z ( χ ί ) < z ( χ 2 ) if X ι C χ 2 .
Finally, it intersects L^ andLj(j = 1, ... i ... N) at real values z0, Zj which
are greater than any z(χ). The situation is illustrated in Fig. 12.
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Fig. 12. The word at infinity in

Fig. 13

Since each L3 (j = 0 ... N) is of degree one in 5, and since LN + l is of
degree 2N~i, these real intersections are all intersections of ^ with L.
Therefore, by the Picard-Severi Theorem 1.2.2 the corresponding
elements generate <&N. For future reference we write down the word at
infinity in / ί? i.e., the anticlockwise loop around the point at infinity in
^ (such a loop is shown in Fig. 12):

-α(Ωi)j8δ Π f t > (2 2 10)
j Φ ί

where Ωf = {1 ... ί... N}. Note that the order of elements α(χ) in (2.2.10)
is sufficiently determined by the order relations on the z(χ) noted above,
in view of the commutation relations (2.2.9).

8 Commun math Phys.. Vol 15
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We close this section by defining a homomorphism

which will be needed in the isomorphism theorem of § 2.4. The parameter
space for the graph GN_^ may be identified with the subspace LN of the

N

parameter space <CN + 1 for GN. The Landau variety L = IJ L{ of G ] v_1

N-l

then is identified with (J (LinLN)u(LN + 1r\LN)C<CN + 1. We choose for
i = 0

&N-ι the base point Bf = (1, ε, ε, ..., ε, 0)eGN + 1. For sufficiently small
77 any element y of ^#-1 has a representative 7 which does not come
within a distance η of L'. We can then choose ε (depending only on η)
sufficiently small that for all ί, 0 < ί ̂  ε, the loop y(t) = {(s) : (s0, . . ., s ] V_1)
^2 SN — t] does not intersect L. We then define 7(7) e $N to be the element
of &N defined by y(ε). If y' is another representative of y, we may choose
the homotopy H between y and y' so that the image of H also does not
come within η of L'; H then gives rise to a homotopy H(ε) between y(ε)
and /(ε). Thus) is well defined on &N-I.

We remark that

(2.2.11)

(χ a proper subset of ΩJV)

2 J. T/z^ Relations Obtained from the Integral Representation

(i) Homogeneity.
The function D'(s, α) is homogeneous and linear in 5. It follows that

the function I(s,λ) defined by (2.1.18) is homogeneous in s of degree

-Σ λi-(N + 2) = μ (say). (2.3.1)
ι = 0

This homogeneity can be expressed as a condition on the representation
&(λ). If w^ denotes the element of <&N defined by a loop circling the
point at infinity in a generic line £ counterclockwise (i.e. circling all the
points Ln/ clockwise) we have

= c00l (2.3.2)

where the constant c^ is given by

c00 = exp[-2πίμ]. (2.3.3)

(ii) Consequences of the Picard-Lefschetz theorem.
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In the group ring <C(^N\ write

α(0) = l + α , (2.3.4)

β. = 1 + bf 1 ̂  f ^ N , (2.3.5)

β'0> = 1 + bg 1 ̂  i ^ N . (2.3.6)

It can be shown that in a standard form presentation of I(s, λ) the points
on L used to define the elements α = α(φ), /? ί5 /?$ of ̂  correspond to a
quadratic pinch in the integration space; in the case of α this pinch is
simple. We can therefore apply the Picard-Lefschetz theorem. For a
simple quadratic pinch and integer exponents for the singularities of
the integrand this is given in [8]. The extension to a non-simple quadratic
pinch is given in [13], and to non-integral exponents for the singularities
of the integrand in [4].

In the present situation we obtain from the theorem the relations

(2.3.7)

i^N (2.3.8)

i ^ N , (2.3.9)

where the constants A, Bt 0 ̂  i g N are given by

1 + A = (-l)N+1 exp[2πΐμ] , (2.3.10)

(2.3.11)

Thus

Yl(l+Bi) = (-l)N + 1(i+A) = c^. (2.3.12)
i = 0

To express the further relations derived from the fact that α cor-
responds to a simple quadratic pinch we introduce the notion of a
Lefschetz element.

Definition 2.3.13. An element e of an associative algebra A is Lef-
schetz if

e2 = Ee

and for all x e A

exe is a multiple of e .

We then write

exe = (e x)e .

Remark, e - x is linear in x. If e, f are both Lefschetz
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Thus the dot product defines a symmetric bilinear product on the linear
span of the Lefschetz elements.

Now we can state the further relations as:

JSf(α) is a Lefschetz element of ^N(λ) . (2.3.14)

The linear functional 3? (a) x, x e <tfN(λ), which appears in (2.3.13) is not
given by the Picard-Lefschetz theorem but must be determined by
exploiting the other relations satisfied by the representation (see § 2.4).

(iii) Localization conditions.

These conditions follow from

Theorem 2.3.15. Suppose Ll...Lk are Landau varieties intersecting
transversely at a point 0 of the parameter space, so that we may choose
local coordinates u with 0 as origin such that

Lt = {(u) : ut = 0} 1 g i ̂  k .

Choose a base point B in the neighbourhood of 0, and denote by y1 ... yk the
(mutually commuting) elements of the fundamental group corresponding
to loops on B around Lγ ... Lk, and by

Tt = J^(yt.) - 1 1 ̂  i ̂  k

the corresponding discontinuity operations in the monodromy ring. Sup-
pose that L t . . . Lk correspond to quadratic pinches in the integration space
on the varieties P1 ... Pfe, and that for u = 0 Px . . . Pk are in general position.
Suppose further that

φ. (2.3.16)

Then

Tί...Tk = Q. (2.3.17)

Remark. For k — 2 and Pl5 P2 single points, Theorem 2.3. 15 follows
immediately from the localization lemma used in the FFLP proof of the
Picard-Lefschetz theorem [8]. We give a sketch of the proof in the general
case:

Construct a metric in the integration space with respect to which
Pl9 . . ., Pk are orthogonal, and denote by N^η) the tubular neighbourhood
of radius η constructed with the aid of this metric. Then for η sufficiently
small

We can choose δ = δ(η) sufficiently small, that for u e σ;

σ; = {(u) : Uj = δ j Φ i
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the poles of the integrand are in G.P. outside N^η). Then we may choose

B = ( δ , δ 9 . . . , δ )

as base point, and take yi = dσi 1 ̂  i ̂  N. The ambiant isotopy A{ for
γt may then be chosen to be the identity outside N^η) and inside Nι(η) to
commute with the projection Pi of the normal bundle N^η) onto Pt.

Now let h be an arbitrary integration cycle defining a function
element h. Then if we compute a representative cycle for T^ ... Tkh with
the help of the ambiant isotopies A{ we obtain successively

supp Akh C Nk(η)

and so supp A^ ... Akh C ΛJ (η) n n Nk(η) = φ ,

so

/z is arbitrary so 7^ . . . Th — 0.
We apply Theorem 2. 3. 15 to the transverse intersection of Lγ ... LN.

If λ0, . .., λN satisfy a certain linear relation we may rewrite (2.1.18) in the
momentum space form, m = 2,

^.^)= Π ,s+fc3;. + 2 g Σ * . ~ P (2.3.18)
J ί = ι l^i "Γ ^ί j v = ι /

Now a point on L^ corresponds in the integration space to a quadratic
pinch on

7 = 1

The P{ 1 ̂ ί ^ N are in general position, and for s0 φ 0, i.e. p φ 0

Hence Theorem 2.3.15 applies, and we obtain the relation

^(^...^ = 0. (2.3.19)

It is also possible to derive (2.3.19) from the geometry of the pinches
corresponding to the L{ in the α-space, so that (2.3.19) holds for generic λ.
In view of the symmetry of the α-space representation (2.1.18) noted in
§2.1 we have also for the transverse intersection of Lt /φj , L$

..^...b^o^O. (2.3.20)

Finally we apply Theorem 2.3. 15 to the real self-intersections of
LN + ί (cf. (2.2.9)) and obtain

for all proper subsets χ t, χ2 of Ω such that }• (2.3.21)
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where

(iv) Physical sheet conditions.
Denote by Ψ the vector in VN defined by the contour of integration

A" in (2.1.18). Ψ is called the physical sheet. By examining whether the
corresponding point P on L corresponds to a pinch of Δ" we may decide
whether Ψ is invariant under a given element of $N (for generic λ there
are no polar singularities so Ψ is invariant if it is nonsingular at P). This
gives the physical sheet conditions

J^(α)<FφO, (2.3.22)

(2-3.23)

N. (2.3.24)

Finally an element of jtfN must be determined by its action on the
vectors of VN = sdN Ψ, i.e.

y G ̂ N,yάtN Ψ= O^y = 0 . (2.3.25)

It turns out that the ring defined by all the relations except the
physical sheet conditions is already isomorphic with a complete matrix
ring. We do not therefore obtain any additional relations from (2.3.25).
The role of the physical sheet conditions is just to give a matrix represen-
tation of the abstract ring by singling out the vector Ψ, and to guarantee
that the tacnode points of Fig. 10 are effective intersections (see § 2.4),
that is,

JS?[αZ>i] φ ̂ [b.a] (i = 1 ... N) . (2.3.26)

Eqs. (2.3.2), (2.3.7)-(2.3.9), (2.3.14), (2.3.19)-(2.3.25) are the relations
which we use in § 2.4. Note that the relations listed in this section do not
include the Cutkosky-Steinmann relations used in [11]. These relations
depend on the vanishing of certain intersection numbers of cycles in the
integration space, algebraically not geometrically (the cycles are not
disjoint), and do not persist in the generic case.

2.4. Derivation of the Monodromy Ring s$N in the Generic Case

Let Jί denote the set of all proper subsets of Ω. For any χeJί, define

b(χ) = Π bt

(with b(φ) = 1).
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Lemma 2.4.1. For any χ e Jί

(2.4.2)

where

M(χ) = ( - )ω (1 + A) - Π (1 + β,) (2.4.3)
i e χ

(i.e., in the notation of Definition 2.3.13,

Proof. For \χ\ = 0, this is an immediate consequence of (2.3.7). For
= {/}; we apply ί£ to the bicommutation relation

yielding

(2.4.2) then follows from (2.3.26).
Suppose now that we have verified (2.4.2) for all \χ\ :g m < N — 2, and

suppose | f / | = m + l, with η = iuχ. Eq. (2.3.21) implies

applying the induction assumption to this formula gives (2.4.2).

Lemma 2.4.4 [Reduction of the word at infinity] :

Σ Π A * Π f t Π
φ, χ C Ω , χ ψ Ωi-(χuψ)

χ=Φ
(2.4.5)

Proof. From (2.2.10) we have

jβg - ' = w«ftα(φ) Π «({/}) - «(Ωί) Π ft (2 4-6)
j * i J * l

We apply <£ to this and use (2.3.2). Write α(χ) = l+α(χ) and expand

J^ΓαCφJΠ «({/})...
L j Φ i

All products

vanish by (2.3.21) unless χj Cχ 2 C ••• Cχ k. Then using
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(2.4.6) becomes

(2.4.7)

...βN + βiΣ x ΓU-βΠft-ΓU-" Π
k = l χι,χ2...Xk Xi X2 Xk (Ωt - χι u u χk)

where χl ... χk are disjoint subsets of Ω, with χ7 Φ φ for 7 > 1. Set χ — χ l 5

φ = Ωf — (fo u uχfc). From Lemma (2.4.2) we have

so that

Γα Π βjθ
L /

But if 77 is any set of m > 0 elements, one has

where the sum runs over all ordered partitions P of η into |P| sets. Thus
we may do the sum over χ2 ... χk in (2.4.7) for fixed χ, ip; this yields (2.4.5).

We define INC<C(^N) to be the two-sided ideal generated by the
elements

a(χ)a(ψ)

wS-c^l
v 1 <- <- M

(2.4.8)

ab(χ)a-M(χ)a χeJί

and form the quotient ring

//N. (2.4.9)

We denote by qN the natural projection <C(&N)-+RN and indicate the
image under qN of an element of C(^) by underlining. We have shown
that the elements of IN lie in the kernel of &:<C(&N)-+L(VN)9 so there is a
natural homomorphism ^:RN-^L(VN).

Lemma 2.4.10. RN is finite dimensional.

Proof. <C(^tf) is spanned by all products of the elements 1, ftf, hj], α.
The reduction of the word at infinity (Lemma 2.4.4), which is also valid
in RN (since only the vanishing of the elements (2.4.8) was used in its
derivation), enables us to eliminate the blQ. We then obtain the following
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finite set of elements spanning RN

b(χ)9h(Xι)ah(χ2), χ, χί9 χ2eJί. (2.4.11)

Lemma 2.4.12. b(Ωf) is Lefschetz.

Proof. It is sufficient to prove that

for each x in the set (2.4.11) and some ^(ΩJ xeC. This follows easily
for all x in (2.4.11) once it is established for x = a. In this case the sym-
metry of the product gives b(Qt) - a = M(Ωi) so we must prove

J> =h(Ωί)ab(Ωi) - M(Ωi)b(Ωi) = 0 .
Now

From (2.4.4) we obtain

But J2o)~1^ = /Jϋ implies j; = 0 or /^(1+βo)-1 or 1. For generic λ

Lemma 2.4.13 (reduction of the identity). The element l=b(φ)eRN

is linearly dependent on the elements b(χ)(χή=φ) and b(χ)ab(ιp). Speci-
fically, if / 1

β=- Σ Λί(χ)Yω, (2.4.15)
χzM

then

()^ (2.4.16)
X^Jί χ,ψ

Proo/.Direct calculation gives

Then from (2AA] $~lh = c^h. Since c^ φ(l -f J^)'1 or 1 this implies
ί = 0(cf. proof of 2.4.12).

We now give the main result of this section.

Theorem 2.4.17 [Determination of ,£/#]. The dimension of VN is
2^ — 1, and ^:RN-^L(VN} is an isomorphism onto. Thus RN = ̂ /N, which
is a complete matrix algebra of dimension 2N — I.
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Proof. Recall that Ψ denotes the physical sheet. From Lemma 2.4.10,
VN is spanned by the elements

&U>(χϊ] Ψ, ^[b(χ1)ab(χ2) ] Ψ (χ, χ1? χ2 e Jί) .

The following Lemma shows that VN is actually spanned by the 2^ — 1
elements

Lemma 2.4.18

(2.4.19)

iΐϊ]Ψ= Σ ΠM P ff[fe(x)]y- (2-4-20)

Proof. Eq. (2.3.23) implies

sTΓfl Π # Ί ̂  = 0 fa e ΛT, >/ Φ </>) (2.4.21)

Now (2.4.19) is trivially true for χ = φ', it then follows from (2.4.21) by

induction on |χ|, using ^7 1 = 1 — r̂ ^~
1+βf

Since /?,- (/ φ /) commutes with β$, we may rewrite (2.4.6) as

Using (2.3.23) and (2.3.24), we have

= c-1Ψ (2.4.22)

and multiplying (2.4.22) by ^[b(χ)] gives

Π (1 +B,)g{\ Σ έ(v)l (1 +^)| ̂  - c-1 Ψ . (2.4.23)

Taking ^ - Ωt in (2.4.23) verifies (2.4.20) for χ = Ω{. (2.4.20) follows for
any χ0 from (2.4.23) (taking η = χ0) if we assume, inductively, that (2.4.20)
holds for any χ3χ 0

We now return to the proof of the main theorem. We write Ψ(ρ)
= ^(b(ρ))Ψ. From Lemma 2.4.18 we obtain the relation

&(b(ψ)ab(χ))Ψ(ρ)

0 if ρ u χ - Ω

[ / _ \\ln- w\ (•-!})(„} Ί
-b(Ψ)+Σ ( ππ + B ; r (2A24)

η^Ψ l l U + ^ i J J
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where the coefficients v*,uy are given by

Γ O
( 2 4 2 5 }

(1+Bi) otherwise v ' ' ;

e π χ ρ u χ

0 unless η D

(14 261

We may regard (2.4.25), (2.4.26) as defining two sets of 2N — 1 vectors
υ(χ) χ e Jί, u(ψ) ψ e Jί in the vector space

We claim that for generic λ each of these sets is a basis for C2*"1.
For the set {u(φ}} this follows immediately from (2.4.26) since the

coefficient matrix \u~\ = [u%~\ is "triangular", i.e. Uη =0 for η (I ψ, un

n φO.
For the set (v(χ)} we argue as follows. It is sufficient to show that the
vectors w(χ) defined by

w =Wρ ~ 1 Π Bi Yl (l + Biϊ otherwise
I Qnχ ρ-χ

are linearly independent since

i.e., to show that the corresponding matrix [w] = [w£] has non-zero
determinant. This determinant has degree

N~l ίN
Σ \Q\= Σ

ρeJί k = 0

in the J3f. It will suffice to show that there is a non-zero term of this degree.
To do this we may specialize to the case in which all the B{ are equal.
Then the leading term in B of det [w] is

where
ίo
1 1 otherwise.
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From the vectors y(χ) we can form vectors

z(χ)= Σ (-i)1"^)
π c χ

which have components

7* — X ( nl(β-e)l x
Zη — °χφ~\ L) °χ,Ω-ρ

and are manifestly linearly independent.
Since the sets {u(ψ)}, {v(ψ)} form bases for (C2*"1 for generic λ there

exists coefficients Cγ

η(λ\ D*(λ) such that

Σ
χe^

Σ βχ =
χe^

Then
/„= Σ

χ,^e

satisfies

Λ^ = <5,,κV (2 4 27)

If for some coefficients gρ e C we have

Σθβψe = o
we may apply /^ to this relation and use (2.4.27) to obtain

But Ψ Φ 0 so ̂  = 0 for all η, i.e. the ΨQ are linearly independent. More-
over the fη are (2N - 1)2 linearly independent elements of £#N(λ).

This completes the proof of the first part of the main theorem.
There remains to show only that ^:RN-><stfN has zero kernel; we

do this by showing that the dimension of RN is at most (2N — I)2. In the
course of the argument we will also prove the important isomorphism
theorem mentioned in the Introduction. We proceed by induction on N:
for N = 2, Lemmas (2.4.10), (2.4.12), and (2.4.13) imply that RN is spanned
by the nine elements

h(χι)ab(χ2) [χι,X2 = <Mi}, or {2}],

thus R2 = ̂ 2 We assume inductively that RN-ι is spanned by the
elements

Define P G RN by P = bN/BN (so that P2 = P), and let SN C RN denote
the sub-algebra SN = PRNP. There is a natural map p: RN-+SN given by
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p(x) = PxP p is a linear map but is not a ring homomorphism. However, if

YN = {x e RNI x commutes with P}

then p I YN is a ring homomorphism.
Now recall (§2.2) the homomorphism j : &N-I-+&NI this extends

directly to a ring homomorphism of €(^-1) mto &(^N) which we also
denote by j. From (2.2.11) and (2.2.5)-(2.2.8) we see that the image
j(&N-ι) C $N commutes with βN; therefore the image qNj{^(^^)] C RN is
contained in YN and we may define a ring homomorphism

by kN = pqNj.

Lemma 2.4.28. The map kN is onto SN. The ideal IN-l o/(C(^v-ι) is

contained in the kernel of kN, so that kN may be factored through a map

kN: RN^1-^SN

with kN = kNqN_1. kN is an isomorphism.

Proo/.We denote by primes variables referring to the graph G Λ r _ 1 .
Note that

£;. = £. (i = O . . . J V - l )
but that

Λ, = 1 1 + A

The verifications of the first two statements of the Lemma are straight-
forward. kN is an isomorphism because, by induction, RN-1 is a simple
ring, and SN is not trivial.

Now our induction assumption and Lemma (2.4.28) imply that any
element b(χ) e RN, with N e χ, may be expressed as a linear combination
of the elements

h(χl)ab(χ2) fc,χ2e^). (2.4.29)

Clearly, this also holds for any b(χ) with χ non-empty. An application of
Lemma (2.4.13) then completes the proof.

It is interesting to note that if we require that the representation 5£ of
^v satisfy all conditions of § 2.3, but consider the constants cx, A, and B(

of (2.3.2) and (2.3.7)-(2.3.9) as independent variables (not connected with
the A's), the relations imply that these constants must satisfy (2.3.12).
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§ 3. Specialization of Parameters

3.1. Introduction

In this section we consider three specializations of the generic integral
(2.1.18) studied in § 2. The first of these is the convergent integral (2.1.1)
with the dimension of space-time m set equal to two. (The convergent
case m = 3, N = 2 could be studied similarly.) The second is the integral
obtained from (2.1.18) by setting all the masses equal; we also study
(2.1.1) in this equal mass case. Finally, we study the integrals obtained
from (2.1.18) and (2.1.1) by setting some of the masses equal to zero.

In § 3.2 we establish certain algebraic results which we will need in
this analysis. These are applied in §3.3-§3.5.

3.2. Rank of the Matrix υ

In (2.4.25) we defined a (2N - 1) x (2N - 1) matrix v = [u*] (χ, ρ e Jί\
In this section we determine the row rank of this matrix when the /f's
have values corresponding to (2.1.1) and the set of linear relations which
hold between the row vectors vχ. In this case Bt = 0 ( ί = 1, ... N), and
(2.2.25) reduces to

0 if χvρ = Ω or ,

1 otherwise .

Note that υ* = 0 if \χ\ + \ρ\ ̂  N.

Lemma 3.2.2. For any χ, ρ e Jί with \ρ\ < N — |χ|, and any k with

V* =
- \i\-\o\

Proof. Clear.

The matrix v may be partitioned into submatrices

v* = {v* \χ\ = k , \ ρ \ = j } .

We have already noted that t;* = 0 if k -f-y ^ N. We will be interested in
particular in the submatrices υ] with k H-y = N — 1.

Lemma 3.2.3. The row rank of v is equal to the sum of the row ranks
of the matrices υ] with k +j = N — 1.

Proof. Suppose that

Σ *χ = 0 (|ρ| = N - f c - l ) (3-2.4)
\X\=k
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is a linear relation on the rows of vk

N_k_l. Then by Lemma 3.2.2, this
relation holds for all ρ; that is, it gives a relation on the rows of v. Con-
versely, let

Σ aχv* = Q (ρe-JO (3.2.5)
χeJt

be a relation on the rows of v. Then for |ρ| = N — 1, this reduces to

V^ χ β

Again from Lemma 3.2.2, this holds for all ρ, so that (3.2.5) becomes

Σ y Ad v* = U .

By induction we obtain

Σ y ΛaγVρ = 0

for all k rg N — 1; that is, the relation (3.2.5) is the sum of relations on
the rows of the matrices υk

N_k_ί.

Lemma 3.2.6. The matrix vk (k +j rg N — 1) has maximum possible
rank, i.e.

Proof. Since v is symmetric, we may assume without loss of generality
/N\ fN\

that I hg I . We proceed by induction on Λ f ; the result is clear for
\j J \kj

N = 2. For the induction step we have two cases:
'N\ fN\

.JΓW
We partition v^N) into 4 submatrices w: ... w4

WΊ = [V*Q\ 1 e χ, 1 £ ρ, w2 = [ϋj] 1 e χ, 1 e ρ ,

w3 = [̂ ] 1 Φ X, 1 Φ Q, ^4 = [v*~] I φ χ , 1 E ρ .

Note that w 2 =0, and Wi =^~1(N-1), w 4 = φ^N-l).
By the induction assumption both wt and w4 have maximum possible

/N\ ίN\
rank. The assumption of case 1 I 1 < I I implies

\J J \kj

so
Ά r - Λ , /N-i

7
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This gives rank v^(N) = ( ) + ( } = \ ), which completes the
w'-v V j J \j J

induction step.

We partition υ^N) into 4 submatrices wί ... w4 as in case 1, and note
N ~

that w3 is nonsingular, since w3 = u*(N — 1) unless N odd and fe =

when

t = δ ' - * f o r

We now define a new matrix x by xχ

ρ = vχ

Q for 1 $ χ and

x* = (N-2fc)ι;*- X vx-(^(j} for l e χ .
j * x

Then if 1 e χ, x* = 0 for 1 φ ρ, and for 1 e ρ

We thus obtain a partitioned matrix x equivalent to u* whose blocks
Xi ... x4 satisfy

Xl =0, x2 = -(N-2k+l)t£rί(JV-l),

x3 is nonsingular .

By the induction assumption the square matrix x2 has maximum possible

rank. This gives rank d(N) = ( Γ ) + ( , " " , ) = ( ,V k J \ f c - v k

Lemma 3.2.6 implies

N
Note that for I <j I the rows of the matrix ^_!_ f c are

Λ/
linearly independent. For ( > ) they satisfy

/c / \ /v — 1 — K N-l-k

. independent linear relations, and by Lemma 3.2.3 these relations
/

also hold as relations on the complete rows v* with |χ| = k.
We now write down a set of linear relations on the rows of v and

show that any linear relation on the rows of v is a consequence of these.

ΓΛΠ
Lemma 3.2.8. For any integer p^\ — \ and any subset of 2p distinct

indices chosen from {1, ..., N}j(i, s) 1 ̂  / ^ p, s = 0 or 1

£ (_I)^ I I ;«-{J(I,SI),...,J(P,SP)} = O. (3.2.9)
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Before proceeding to the proof we write down examples of (3.2.9) for
P = l,2.

p = l: v

Ωl = vΩj V z j

p = 2: iΛ' + iΛ'^' ' + iΛ' (3'2'10)

where Ωrs = Ω-{r}-{s}.

Proof. We consider the ρ component of (3.2.9). There are 3 cases.
1. ρ contains7(1,0) and7(1,1) for some z, i^ί^p.
Then each term vχ

Q in (3.2.9)ρ has χ n ρ φ φ and vanishes.
2. ρ does not contain either 7(1,0) or 7(1,1) for some z, 1 g i ̂  p.
Then two terms in the sum (3.2.9)ρ which differ only in the value of sί

are numerically equal but have opposite sign so the sum gives zero.
3. For each z, 1 ̂  i ^p, ρ contains just one of 7(1,0), 7(1,1).
Then |ρ| g: p so each term in (3.2.9)ρ is zero by the remark preceding

Lemma 3.2.2.

Lemma 3.2.1 1. There are at least — I I independent relations
\p I \ p — 1 /

in the set (3.2.9). ^ 7 ^ 7

Proof. The relations (3.2.9) span a vector space R(N,p); we must
fN\ f N \

show dimJR(N, p) ̂  — . The proof is by induction on JV;
W \P-V

the proof is obvious for N = 2 from (3.2.10). For general N we define a
map / : R(N - 1, p)->R(N, p) by

and a map 0 : JR(JV, p)-*R(N -l,p -1) by

Then / is an injection, g is onto, and gf = 0, so that

dimR(N, p) ^ άimR(N - 1, p) + dim#(]V - 1, p - 1)

N

From Lemma 3.2. 11 and the remark following Lemma 3.2.6 we see
that the relations of Lemma 3.2.8 are a complete set of relations on the
rows of v. This implies that the sequence

is actually exact.

9 Commun math Phys , Vol 15



116 G. Ponzano, T. Regge, E. R. Speer, and M. J. Westwater:

3.3. Dimension of VN

We now discuss the algebra jtfN in the case in which the λt have values
corresponding to (2.1.1). Care must be taken in this specialization; in
particular, the elements (2.4.29) (or more precisely their images under JS?)
no longer span jtfN. However, the formulae for the matrix representation

JS?(x)φρ= Σ &(x,λ)χρψχ Q£Jt,xe<£($N) (3.3.1)
χeM

continue to hold when we specialize the values of the λt. (The matrix
elements j£?(x, λ)χρ are continuous in λ.} But note that the vectors {ψρ}
do not remain linearly independent when we specialize the λt. We obtain
this reduction in the dimension of VN by application of the separation
principle (Lemma 3.3.3).

Suppose that / is a homogeneous function of n complex variables,
of degree d, which satisfies

(1) / is holomorphic in the universal covering of the complement of
an algebraic variety

LC<C",

(2) if z0 is a point not in L, the germs of/ with center z0 span a finite
dimensional vector space K(z0),

(3) if z1 is a regular point of L, ί(z) = 0 a local equation of L and U
a neighbourhood of z^ sufficiently small that the cut region

is simply connected, there is an integer p such that for any branch /' of
f\U'9 [φ)]p/'(z) is bounded in 17'.

Remark. Conditions (l)-(3) are essentially the conditions defining a
function of Nilsson class [14], except that we have imposed a weaker
form of the growth condition (3).

Lemma 3.3.2. Under the above assumptions f has a decomposition

f ' ( z ) = £ tf(z)γ [logt(z)fAktQ(z) . (3.3.2)
k,ρ

In (3.3.2) the summation is over a finite set of pairs (fc, ρ), k a non-
negative integer and ρ a complex number and the functions Akί6(z) are
holomorphic in 17.

Proof. πx (U — L) is infinite cyclic with generator α (say) and acts on the
vector space V(z2) where z2 is a base point in U — L. (3.3.2) is obtained by
reducing the matrix JSf (α) to Jordan canonical form (cf. [1]).

As in §2.1 we may consider the representation JS? of π^C" — L;z0)
defined on F(z0) by analytic continuation.
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Lemma 3.3.3 (separation principle). If in addition to conditions (l)-(3)
formulated above, the homogeneous function f satisfies

(4) no exponent ρ in any local decomposition (3.3.2) of a branch of f
about a regular point of L is a negative integer, then the relation

j§?(α)Φ = Φ V α 6 Tii(<P - L z0)

implies that the function Φ e V(z0) is either zero, if d is not a non-negative
integer, or a homogeneous polynomial of degree d, if d is a non-negative
integer.

Proof. Φ evidently defines a single valued function on C" — L. Lemma
3.3.3 then follows from the growth condition (3) which forces Φ(z) to be
rational and (4) which rules out the possibility of polar singularities on L.

We have already remarked that our integral (2.1.18) satisfies (1) and
(2). When the /I's are specialized, conditions (3) and (4) follow from the
Picard-Lefschetz theorem.

Lemma 3.3.4. // £ dχv
χ = Q is a linear relation on the row vectors

χ e J ί
of the matrix v of § 3.2, the corresponding relation ^ dχψχ = 0 holds

τ / χeJί
in VN.

Proof. It is sufficient to consider the case in which the linear relation
is one of those obtained in Lemma 3.2.8. From the separation principle
it is enough to show

These relations may be directly verified using the explicit form of the
coefficients dx corresponding to (3.2.9).

We now show that there are no more relations among the vectors
Ψχ. Let W denote the vector space C2*"1, and let W be the subspace

Σ^X = <

Then the vectors vχ span the dual space (W/W)* C W*. Let /: W-* VN

be defined by
fίfj ^^Yjψ

J \\uχϊ) Li uxτχ

f is onto. Then (2.4.24) becomes

&ίb(ψ)ab(χf] /(w) = (t;* w)/(«<"). (3.3.5)

Lemma 3.3.6. The relations of Lemma 3.3.4 exhaust the relations
among the vectors Ψρ.
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Proof. This is precisely the statement that the kernel of / is W (we
know k e r / D W ' by Lemma 3.3.4). Suppose then weker/, butwφW.
Since the vrs span (W/W)*, there is some QξJί with (rρ vv)φO;
applying (3.3.5) with χ = ρ, ip = Qtj gives

0 = (t;β w)/(wΩ' 0,
so that

But again from (3.3.5) (with ψ = φ)

Thus &(a)Ψ = 0, contradicting (2.3.22).

( N

Corollary 3.3.7. The dimension of VN is 2N — I

Proof. This follows from Lemmas (3.3.4) and (3.3.7), and Eq. (3.2.7).
As we have seen in § 2 the representation 3? (λ) of ̂  is irreducible for

generic λ. However, in the specialized case under discussion the represen-
tation is reducible. The reducibility of the representation may be anti-
cipated by considering the integral (2.1.0). Each discontinuity of I(s) is
given by integrating the differential form which appears in (2.1.0) over a
suitable cycle. The cycles which arise in this way are of a particular
form - they are coboundaries of cycles which lie on the intersection of
one or more of the pole varieties

The Leray residue calculus may thus be used to express the discontinuities
as integrals in which one or more of the propagator poles (fc? +s ί)~1 in
(2.1.0) is replaced by a <5-function [8]. We may define a sequence

VN = W° D W1 D - O WN D φ (3.3.8)

of subspaces of VN:
Wk = {J> e V N : J* has a representation as a linear combination of

discontinuities, each one of which can be written as an integral in
momentum space in which fe of the propagator poles are replaced by
^-functions}. The subspaces Wk of (3.3.8) are invariant under & so <£ is
reducible.

We now define (from a purely algebraic point of view) a sequence Vk

of subspaces of VN, which are invariant under <&. Presumably this
sequence can be identified with the sequence (3.3.8).

Lemma 3.3.9. There is a unique minimal subspace of VN invariant
under ^.
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Proof. Let V be an invariant subspace of VN, and x a non-zero vector
in V. Then we may find a vector vχ such that vχ - f ~1 (x) φ 0 (where
/: W-> VN is defined above Lemma 3.3.6), and hence

JS?[&(v)^ω]x = [^7"1W]/("v)Φθ (3.3.10)

for all ψ e Jί. V thus contains all the vectors f(u^} and hence their span.
It is easy to check that this subspace l£in of V is invariant.

For each χ e Ji we can write

(3.3.11)

where
/ / — V (_ 1)1*1^ (3.3.12)

vex
and

m χ = X M*. (3.3.13)
ψ c χ

From (3.3.13) it follows that Fmin = span{/(m*), χeJί}, i.e. the span of
the discontinuities for the leading Landau variety. Thus certainly

V C WN

* mm ̂  r r

which motivates the definition VN — Fmin. For /c, O r g / c ^ N — 1 we define
Ffc to be the minimal invariant subspace of VN containing all vectors ψχ

with |χ| = k. Clearly Vk C Wk.

Lemma 3.3.14. For

For

JV \ / N

T/z/5 Lemma zs readily proved with the help of Lemma 3.2.6.

On ί̂ , and hence on Fmin C PFN, there is a natural scalar product
defined by

0ι #2 = Kronecker index of a pair of cycles ̂ f1?^2 on

Sin- r^SN defining the discontinuities 0 l5 02 of /(s).
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The scalar product is symmetric for N even, antisymmetric for N odd.
This scalar product on Fmin may be recovered from our algebraic results.
We may regard the scalar product as defining a linear map τ of Fmin into
its dual space. From the Picard-Lefschetz theorem we know that for
each χ e Jί

τ(/(m*)) = c/*, (3.3.15)

where £*• is to be regarded as defining an element of V* m via

^-x = ̂ ./-1(x) xeF m i n

and cχ is some constant to be determined. The symmetry property of the
scalar product noted above gives

But a direct computation gives

Sxi.mx2=(-lfSX2.mxi (3.3.16)

so if we normalize τ by taking cφ = l we have cχ = l for all χ. If for some
constants aχ

Σaχf(mχ) = Q

(3.3.16) shows that for any ψ

i.e. that Σaχ£
χ defines the element 0 e F în. The map τ defined by (3.3.15)

with cχ = l may thus be extended to a linear map τ '• Vmίn-+ V*in as
required by homological considerations.

3.4. Equal Mass Case

We now consider the integrals (2.1.18) and (2.1.1) in the case where
all internal lines have the same mass:

s' = sί=s2 = ••• =SN. (3.4.1)

Let C2 denote the subspace of CN + 1 specified by (3.4.1); we thus wish to
find the representation < 0̂ of ^((C2 -<C2r\L) generated by /(s,/l)|C2

[see (2.1.18)] or /(s)|C2 [see (2.1.1)]. Our base point B for ̂ (CN + 1 -L)
= &N was chosen to lie in (E2; thus if we also use B as a base point for
π^C2 — C2nL) there is a natural map

e:π1(€2-C2nL)-^^ ]V.

We clearly have
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so that finding the representation JS?0 is equivalent to finding e. Note
that even if our sole objective were to construct the monodromy group
in the equal mass case, it would still be useful to consider the case of
unequal masses. For the fact that the Feynman integral regarded as a
function in s, s' is a restriction of a function analytic in s, sf l^i^N
gives us additional information on its monodromy ring which is ex-
pressed by the factorization of J&?0 through e.

Now (C2nL is given by

We let ak (k>0) denote the generator of π^C2 — <C2nL) corresponding
to the line s0 = k2s' (see § 2.2), and β denote the generator for s' = 0; we
do not need to consider the generator for s0 = 0 since its image under
j£?0 may be obtained from β, the αk, and the loop at infinity (which is
again represented by c^ times the identity). The line s0 = k2s' (fc>0) is

N — k
the intersection of all surfaces LN + 1(χ) (2.2.3) with |χ| = — - — . Since

the generators α(χ) for these surfaces commute, we have

Φ*)= Π «ω (3 4 2)
|*|=(tf-fc)/2

Similarly,
e(β) = βί...βN. (3.4.3)

We now turn to the question of the dimension of the representation
JS?0, that is, the dimension of the subspace Vβ of VN spanned by vectors

[&o(γ)Ψ\y E πι(C2-C2nL)}.

Theorem 3.4.4. a) For generic λ, V$ = VN, so that dimV$ = 2N-L
b) For the λ's specialized to correspond to (2.1.1), V$ is spanned by

the linearly independent vectors

Vk= Σ ^ (fc = 0, l , . . .N-l) (3.4.5)
| ρ | = f c

50 that dim V$ = N.

We remark that the conclusion of b) is obtained if the A's are only
specialized to satisfy
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Proof, a) We will show that the orbit of Ψ under the action of β spans
VN. For n ̂  1,

^o(βn}Ψ= Σ A(ρ,n)Ψρ (3.4.6)
qeJi

where

I R

as may be easily verified by induction. Thus it suffices to prove that the
matrix {A(ρ, n)} (ρ e Jt, n — 1, . . ., 2N — 1) is nonsingular. But ^4(ρ, n) is
equivalent to the matrix

*(Q,n)= X

The determinant of A' is a Vandermonde determinant and is non-zero
as long as

for any distinct ρ and ρ' in ̂ .
b) In this case

Bί = B2 = ' - =BN = Q (3.4.7)

so that (3.4.6) becomes

The matrix

{nk} (n = l, . . . J V ; f e = 0,. . .N-l)

has non-zero determinant, so the vectors ίFk all lie in V$. It follows from
Lemma 3.3.6 that these vectors are linearly independent. Finally, (3.4.7)
implies that the operators £?(β) and JS?(αk) are completely symmetric in
the indices 1, ...N. The vector space spanned by the Ψk is therefore
invariant under these operators, and must coincide with V$.

3.5. The Zero Mass Case

We now study the representations generated when the mass of one
line in the graph GN is set equal to zero. Since the amplitude ί(s, λ) is
singular on the surface CN = {s|s# = 0}, some care is needed in this
discussion. For generic 1, the Picard-Lefschetz theorem implies that in
a neighbourhood of any point of (CN — (CN n L we may write

/(s, A) = s~N

(1+λN)R(s, λ) + S(s, λ) , (3.5.1)
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where R and S are analytic in this neighbourhood. It is natural to study
the analytic properties of both R(s, λ) \ <CN, a sort of residue of /(s, λ)9 and
5(s,λ)\<CN, which is indeed the restriction of 7(s,λ) to (CN whenever
ReΛ N < -I.

Recall that Ψ is the germ of the physical sheet of /(s, Λ) defined at the
base point jB = (l,ε, ... ε). From (3.5.1) we see that the formulae

Φ= lim s$ + λ»> — Ψ, (3.5.2)

Θ= lim 1 -- ~ y (3.5.3)
SN-+O\ BNJ

give well defined functions at the base point B = (l,ε, ... ε, 0) of
CN — <CN n L, which may be analytically continued throughout
<CN — <CNr\L. Φ and <9 generate representations

respectively.

Theorem 3.5.4. There are natural isomorphisms

and for ΐ = l,2, and ye^N,ίy

^i(y)=fΓί{^J(y)}fί 0.5.5)
Here j : ̂ -i ~*^N ^ ̂  mαP °/ § 2.2.

Proof. For y e ̂ N - 1 we define

ψ

The above properties are then easily verified, using the fact that bN

commutes with j((^N^1). Note that (3.5.5) states essentially that j^ is

given by restricting 5£ to bNVN or ( 1 --- — 1 FN, for z = 1, 2 respectively.

^We will not discuss these representations in detail, but will point out
several immediate consequences of Theorem 3.5.4. Define
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where again we have used primes to denote elements of (C^v^). The
vector space V^ has dimension 2]V~1 — 1, and we may take as basis
{Φρ\ρή=ΩN} (note ΦΩN = Q). In fact, it follows from Lemma 2.4.28 that
&Ί is isomorphic to the standard representation associated with the
graph GN^1. The vector space F^2) has dimension 2N~l with basis {Θe}.
It may be shown that ^/[C^v-i)] is a complete matrix ring for i = 1, 2,
of dimension 2N~1 — 1 and 2 J V~1, respectively.

We will not discuss the modifications of this behavior which occur
when the /Γs are specialized to correspond to (2.1.1). Such a discussion
could easily be obtained by the techniques of this section, § 3.3, and § 4.

§ 4. The Renormalized Integrals

4.1. Introduction

In this section we discuss the analytic structure of the renormalized
integral in the case in which the dimension m of space-time is set equal
to 4. A similar discussion could be given for other values of m.

To define the renormalized integral for the graph G^ we use the
method of analytic renormalization developed in [15]. We denote by
J> = {J>N} an arbitrary generalized evaluatorin the sense of [15] 5, and by
<f° the particular evaluator defined by

Σ ί - ί
σεSN J J

μ i - # σ ( l ) HN\ =R<τ(N)

In (4.1.1) F(μ) is a function such that for some integer m

π
is holomorphic in the neighbourhood of μ = 0. The summation is over all
permutations of 1, ..., N and JR1 ? ..., RN are small positive real numbers
satisfying

R^Rt + - +Rί_ί for 2^ί^N. (4.1.3)

The integral (2.1.18) is convergent for

N

X Re^-f (N + 2)>0 (4.1.4)

5 The evaluator J must satisfy the following additional condition. Let F(μ) be a function
as in (4.1.1), andletFz(μ1 ? ...,μN) = F(zμl9 ..., zμN), for any ze(C. Then JFZ = J>F.
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and defines for s in the neighbourhood of the base point B a function
holomorphic in λ in this region. However, the value of λ corresponding
to m = 4

λQ=0 λt=-2 i^i^N (4.1.5)

does not lie in the region of convergence. In [15] the function

J(U) = /(U)L0 = o (4-1.6)

is considered, and it is shown that for s in the neighbourhood of B this
function is the restriction to the region

N

£ Reλi + (Λr + 2)>0 (4.1.7)
i = l

of a function £(s, λ) meromorphic in the entire space (CN of λ. We will
need the following more precise statement about the behaviour of
E(s,λ) in the neighbourhood of the point (4.1.5): if μi = 2πi(λi + 2\
E(s, λ) admits a representation

E(s,λ)=
σeA

Here the summation is over all even permutations of {1, . . . , Λ Γ } and
Eσ(s, μ) is holomorphic in μ in the neighbourhood of μ = 0. The physical
sheet of the renormalized amplitude is then defined to be

SE(s,λ) = F(s). (4.1.9)

The extension construction can be applied also to the integrals which
define other sheets of J(s, λ). If γ e &N we obtain in this way the com-
mutative diagram

J(s,λ) -ΠZU T(γ)J(s,λ)
analytic con-

tinuation in λ
analytic con-

tinuation in λ

E(s,λ) -ϊίzU T(y)E(s,λ) (4.1.10)

F(s) _™_> Γ(y)F(s)

T(y) denotes the operation of analytic continuation along some re-
presentative loop for γ. As in §2.1 we may introduce the vector space
VNtj spanned by germs of FN(s) with center B and consider the represen-
tation

d =
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defined by analytic continuation. (We show below that dimF^^ is
finite.)

To determine £?# we start from the results established in § 2 for the
generic case, which according to the upper square of (4.1.10) are valid
also for generic λ in the neighbourhood of μ = 0. The vectors ψχ χ e Jt
span VN(λ\ but it does not follow that the vectors J\pχ χ^Jί span VN^.
For when we express an analytic continuation of E(s, λ) along some path
as a linear combination of ψχ the coefficients cχ depend on the para-
meters λ and

*#(cχ(μ)ψχ) may not be equal to cχ(0) J>\pχ .

A simple example should make this point clear and illustrate the technique
of constructing 5£j. Consider the function

i ί4-1-11*
For μ φ O this function is holomorphic in <C — {0}. Its germs over a
nonsingular point span a one-dimensional space on which the infinite
cyclic group π^CC — {0}) acts. If γ denotes the generator of this group the
representation is given by

= (e\p(2πiμ))ψ. (4.1.12)

The operation J* applied to (4.1.11) gives

logz. (4.1.13)

The germs of this function span a vector space of dimension 2, with basis

ψί = J^ψ = logz and ψ2 = </(μιp) = l. (4.1.14)

The action of π x (C— {0}) on φ1? ψ2

 maY ^e deduced from (4.1.12)

= ψ1 +2πίψ2 ,

since S(μkψ) = Q for k ̂  2.

Returning to the discussion of the Feynman amplitudes, we denote
by M(χ) the set of all monomials

μm=l\μT (4.1.15)
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in the variables {μf i e χ}. Here mh i e χ are non-negative integers and we
use the customary multi-index notation m — (mι; i E γ)

\m\ = Σmi m! = Π m i ! (4.1.16)

Set
A(χ,m) = S(μmψx). (4.1.17)

From our results for the generic case it is clear that these vectors span
VjfN - if we take our expression for &(a\ ^(b^ applied to ψχ as a sum
of vectors Σcρ(μ)ψρ9 multiply by μm and apply «/ we obtain corresponding
expressions for 3?j(a\ J^V(fci) applied to A(χ,m) as a sum of vectors
A(χ', m'). (The explicit formulae are given in § 4.2.) J^ N has finite dimen-
sion in view of Lemma 4.1.18.

Lemma4.1.18. A(χ, w) = 0 unless
i) \χ\ + \m\<N9

ii) m e M(χ).

Proof. For χ = φ this follows immediately from (4.1.8). For χ Φ φ we
need a corresponding decomposition of ιpχ. In momentum space φχ

may be written as a repeated integral over the momentum vectors kt

i E χ and then over the kt i e χ. The first integration gives the physical
sheet of the graph GN,\χ\ and the second integration is over a compact
region. If we substitute for the first integral its decomposition (4.1.8) we
obtain for ιpχ the decomposition

where the summation is over even permutations of the indices in χ. The
statements of Lemma 4.1.18 follow immediately from 4.1.19.

The only essential point in the determination of <£# remaining is to
decide what linear relations hold between the vectors A(χ, m). We
exhibit in § 4.2 a number of these linear relations but we are not able by
our algebraic methods to determine the dimension of VN^ because there
are a number of vectors in VN^ representing single valued functions and
we cannot decide how many of these may be zero.

A comparison between the method of analytic renormalization and
the method of subtraction yields the following

Lemma 4.1.20. For \m ^ 1 A ( χ , m) is a polynomial in s0.

Proof. For χ = φ we note that the proof of the equivalent of the method
of subtraction and that of analytic renormalization gives

,), (4.1.21)
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where &E(s, λ) is holomorphic in λ for μ = 0. Multiplying (4.1.21) by
μm and applying «/ we obtain

(4.1.22)
s0 = 0/

a polynomial in s0 of degree ^ ω(G).
The proof for χ φ φ is reduced to the preceding case by the argument

used in the proof of Lemma 4.1.18.
We will obtain more precise information on the functional nature of

the A(χ, m) in § 4.3.

42. The Linear Relations on the A(χ, m)

Lemma 4.2.1. For all \p e Jί ana multi-indices m, 0 < \m\ < N — 1 — \ψ\
we have

^—^ / m
i ^ K i ^ N - i - H - H (42<2)

Proo/.For all φ G Jί the vector &(b(ψ)a)Ψ e FN(A) can be represented
as an integral over a compact contour in momentum space, or in α-space
over a contour which does not bound onto any α f = 0 plane. It therefore
has no divergences as μ->0, i.e. it defines a function holomorphic in μ in
the neighbourhood of μ = 0. Thus for all m with |m| > 0 we have from
(2.4.24)

^{μm Σ <%}=0. (4.2.3)
I ηeJί }

Substituting the explicit form of the coefficients as functions of μ given by
(2.4.26) and (2.3.11), (2.3.12) we obtain (4.2.2).

Examples. For JV = 2 Lemma 4.2.1 gives us no relation.
For N — 3 we obtain 3 relations (m = {/}, ψ = φ)

- Σ SfaHV) = Σ SfaiftV) > (4.2.4)
J* i J

We have now expressed in the above Lemma the fact that discon-
tinuities of Ψ across the leading Landau singularity have no divergences,
and in (4.1.29) the fact that discontinuities Ψχ across one or more of the
internal mass singularities L; have only divergences corresponding to
certain subgraphs of GN. It remains to decide what divergences may
appear in a discontinuity taken across the second-type singularity L0.
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In the case m = 2 ^(bJ

Q) VN C Fmin the subspace spanned by discontinuities
across the leading singularity. This does not mean, however, that the
functions ^(bj

0)ψ have no divergences in the case m = 4. In fact the pinch
corresponding to the second-type singularity s0 = 0 is given by

N

d(a) = 0 X α f Sf - 0 . (4.2.5)
i = l

For JV = 2, 3 this does not intersect the 0^ = 0 planes so J£(bj

0)ψ has no
divergences, i.e. is holomorphic in μ for μ = 0. But for N > 3 it has non-
zero intersection with the sets

} (4.2.6)

provided |χ| :g N — 3. ^(bJ

0)ψ thus has a corresponding decomposition

where the summation is over all ordered subsets containing N — 3 indices,
and the functions H are holomorphic in μ at μ = 0. (4.2.7) can be rewritten
in an equivalent form by using (2.4.5) and noting that all terms involving
a define functions holomorphic in μ and may be absorbed into the
functions H. The resulting formula no longer contains j. A similar
discussion may be given also for ^(bj

0)ψχ χ φ φ.
We conclude this section by showing how the decomposition formulae

(4.1.8), (4.1.29), (4.2.7) may be used to obtain further linear relations on
the A(χ, m).

Consider for definiteness (4.1.8). We obtain a linear relation

i) = 0 (4.2.8)

if we can find a polynomial

Σcmμm = P(μ) (4.2.9)

of degree N — 1 such that for all σ e AN

P(μ)
| = 0. (4.2.10)

For
P(μ)Eσ(s,μ)

S,0)^h ^/ 4- -I- // i i / / -4-
σ ( l ) ' ' Mσ(JV)/ * V M α ί l ) ' J
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(4.2.10) gives a set of linear equations on the coefficients cm. A first sight
there are too many equations at least for large N and one would expect
only trivial solutions. But by looking for solutions with some symmetry
and exploiting the symmetry properties of J we can show that there are
non-trivial solutions for any N and any choice of«/. It appears difficult
to determine how many solutions exist in general. Note that the co-
efficients in the linear equations for the cm depend on J so that to obtain
the linear relations (4.2.8) explicitly in a particular case we must choose
a particular </, say </ = J°. For N = 2, 3 we obtain 1, 3 relations (4.2.8)
respectively.

4.3. The Functional Form of the A(χ, m)

We distinguish four types of functions:

A. homogeneous polynomials in s of degree - — ,

B. multilinear functions of lns f 1 £Ξ i ̂  N with coefficients of type A

We call max|χ| the logarithmic degree of/.

C. Polynomials in 5 of degree — -— + 1, divided by s0?

D. multilinear functions of In sf 1 g i :g N with coefficients of type C.
It will follow from the results in this section that V N t j has an invariant

subspace K such that the induced representation of &N on VN^/K is iso-
morphic with the representation of &N obtained in the case m = 2 (§ 3.3).

Lemma 4.3.1. // |χ| + \m =N — l and \m\ ^ 1, A(χ,m) is of type A.

Proof. From (4.1.28) we have

, m) = A(χ(j{i}9 m) = 0 l^i^N.

Also aA(χ,m) = Q since A(χ,m) is polynomial in s0 (4.1.30). A(χ,m) is
thus a single-valued function. The only pole of the renormalized ampli-
tude is the second-type singularity s0 = 0 which is a simple pole. But this
pole cannot appear in A(χ, m). To complete the proof of the lemma we

must show that A(χ, m) is homogeneous of degree — — ̂ -- in 5. Note the

renormalized amplitude is not homogeneous in s. However, if we write
down the equation which expresses the homogeneity of μmψη for generic
μ in the neighbourhood of μ = 0 and apply J to both sides we find that
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A(η9 m) is homogeneous modulo terms in A(η9 m') with \m'\ > \m\

μtnιpη(cs) = c^G^2-Σ^^iψη(s),

A(η, m) (cs) = cω(G*)/2A(η, m) (s) (4.3.2)

-Σμl2πi V ("1)^'' (lθgc)KI

+ C l"1 If ( 2 τ π ) | m Ί ί ϋ Ί A{n>m + m

In the present case η = χ these additional terms vanish so A(χ9m) is
homogeneous.

We remark that (4.3.2) shows that the sheets A(η9 m) (s) of the re-
normalized amplitude satisfy

A(η, m) (cs) = 0(|c|ω(Gjv)/2 (log \c\f '1"lηl ~ H). (4.3.3)

Lemma4.3.4. // N — 1 — \χ\ — \m\ =j and \m\ ^ 1 A(χ9 m) is of type B
with logarithmic degree j in the variables \nst ieχ'.

The proof is by induction on 7 starting from the case 7 = 0 (Lemma
4.3.1). Consider

For 1 ̂  i ^ N we have btB(χ, m) = 0. Since B(χ, m) is polynomial in s0 it
follows that it is single valued and nonsingular for all s. By (4.3.3) it is
polynomially bounded, and hence a polynomial. By (4.3.2) this poly-
nomial is homogeneous of degree ω(GN)/2. By the induction assumption
A(χvψ9m) is of type B with logarithmic degree 7 — \ψ\ in the variables
\nsk ke (χuφ)'.

It is interesting to note that if we use (4.3.2) to examine the homo-
geneity of B(χ,m) we obtain for B(χ,m) (cs)-cω(GN}/2B(χ,m)(s) a poly-
nomial in logc multiplied by cω(G]v)/2 which must vanish identically in
logc. Equating to zero the coefficients of (logc)^ I r g / ^ 7 we obtain
a further set of identities on the A(χ9 m).

We now consider the question: do the identities on the vectors ψχ

which we established in the case m = 2 ((3.2.8), (3.3.4), (3.3.6)) persist in
the renormalized case? This is answered by Lemma 4.3.6.

Lemma 4.3.6 // ]Γ dχιpχ = 0 is a linear relation on the vectors

''"' mψγ e VN in the case m = 2, N — —- hg j 5Ξ N - 1

Σ d χ A ( χ , φ ) = D

is a function of type D of logarithmic degree N — I —j in the lnst.

The proof is by induction on k = N — 1 —j. For k = 0 we have btD = 0
1 g / r g Λ f . Also aD = Q in view of 4.2.1. D is therefore a single-valued

10 Commun. math Phys., Vol 15
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function in s, and can at worst have the s0 = Q pole. Thus s0D is every-
where nonsingular. From (4.3.2), (4.3.3) it follows that it is a homo-
geneous polynomial of degree ω(GN) + i. For fc>0 we note again that
aD = 0 in view of 4.2.1. Also from the explicit form of the identities in
the case m — 2 we see that for all ψ \ψ\ ^ 1 b(ψ}D is a sum of the same
kind with k' < k and hence by the induction assumption a function of
type D of logarithmic degree JV — 1 — j — \ιp\. We consider

B = D + (

biB = aB = 0 so B is a single-valued function. As in the case fc = 0 it
follows that s0B is a homogeneous polynomial of degree ω(GN) + l.

We remark that 4.3.6 cannot be improved to give D a polynomial in
SQ. For an explicit calculation in the case N = 2 gives
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