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1 Divergence Theorem for scalar, vector and tensor fields

Tensor Fields Let 2 C R™ be an open domain.

e ©: Q) — Ris a scalar field;
e v: ) — R™is a vector field;
e T:Q — Lin(R™,R¥) is a tensor field.

Notation convention: it is often convenient to denote vectors and tensors in index notation, e.g., v;
(vi = v -e;) and T); (T = €,Te;), where the bases {€,,p =1,--- ,m} and {e;,i =1,--- ,n} are
usually not specified but tacitly understood.

Differentiation Let ¢ be a scalar field on {2 C R". For any a € R",

Dy(x): R" — R,
(Dp(x))(a) = lim 2+ =209

e—0 e

Definition: ¢ is differentiable on Q if Dy(x) € Lin(R",R) for all x € Q

p(xt+ea) = o(x)+e(Dp(x))(a)+o(e)
= ¢(x)+eVp(x)-atole) VxeQackR™

and

n
_ Z _ o p(xtee) —p(x)  Op(wier + -+ xnep)
VR = 2 e s e Ve S T - o |

Definition: v : 2 — R is differentiable on € if every component is differentiable
v(x) =) up(x)é, .
P

Definition:

Vv(x) = Dv(x) : R" — R™

m

(Vv(x)(a) =) &Vo,(x)-a
p=1



Thus,

Vv(x) = Z Up.i€p ® € .
Dyl

Divergence: If m = n, div(v) = Tr(Vv), i.e.,
div(v) = vje; - € = v;;.
Further, if T : Q — Lin(R",R™) and
T(z) = Tpiep @ e;.
Then

div(T) : R™ - R
diV(T)(a) = Tpi,ia . ép.

One may identify div(T) with a vector field Q@ — R™ (instead of Lin(R™,R)). With an abuse of
notation, we write

le(T) = Tpi,iép-

Field of class C°,C', C?,... ,C™®
¢ CLaM: Assume ¢, v, u, T: Q — R, R" R" Lin(R",R™), w : Q — R™ are smooth fields on
Q. The following identities hold:

1. V(pv) =v® (Vo) + ¢Vv;

2. div(pv) = (Vo) - v + @divv; V.v=divv
3. V(v-u) = (Vv)Tu+ (Vu)lv

4. div(v ®@ u) = vdiv(u) + (Vv)u

5. div(TTw) = T - Vw + w - divT

6. div(¢T) = @divT + TV

Proof: Tacitly, an orthonormal basis {e1,- - ,e,} C R" and an orthonormal basis {1, -+ ,€,,} C
R™ are chosen and fixed. Notation: Einstein summation, i.e., summation over double index is
understood. For example, to show 5, we have

diV(TTW) = (Tpiwp) i = Tpijwp + Tpiwp; = w-divT + T - Vw



Curl operator: Let v : Q — R3.

ey ez e3 3
curlv =V x v = 81 82 ag = E Eijkvkdei,
V1 V2 Vs =1

where Levi-Civita symbol is defined as

1 if (ijk) = (123), (231), (312),
Sk = —1 if (ijk) = (132), (213), (321),

0 otherwise.
We notice that &;;;, is antisymmetric, i.e.,
Eij = —Eikj,  Eijk = —Ejik,  ete.
A useful identity between Kronecker symbol and Levi-Civita symbol is
EpijEpkl = 0051 — 030k

Let Q C R? be a domain in R3?. Assume that v : Q — R3, ¢ : Q2 — R are smooth fields.
¢ Cramm: the following identities hold:

1. VxVp=0.

2. div(V x v) = 0.

3. Ifa,b,ceR3 ax(bxc)=(a-c)b—(a-b)c

4. Vx(Vxv)=V(V-v)—Av.

5. (Vxv)xa=[Vv—(Vv)]a.

6. diviuxVxv)=(Vxv)-(Vxu)—u-(VxVxv).

Proof:

Divergence Theorem
Let © be a smooth simply connected domain in R", v : 2 — R™ is a smooth vector field on €.

Then we have
/ v®nda = / Vvdv, (1)
o0 Q

where n : 92 — R" is the outward unit normal on the boundary 9. If m = n, take the trace of
Eq. (1), we have

/ v-nda = / divvdv. (2)
o0 Q



For a smooth tensor field T :  — Lin(R™; R™), we have

/ Tnda:/diVTdv. (3)
o0 Q

¢ PROVIDE a heuristic proof for (1) with Q being a rectangle in two dimensions.

Implications of divergence theorem in physics and mechanics

1. Gauss theorem.

2. Stokes theorem or Green formula. In R3, let C be a directional closed space curve given by
{x(s) : s € [0,L]}, s is the arc-length parameter, S be a curved surface with C being its
boundary, and ¢, (v) be smooth scalar (vector) field defined on the entire space. Then we

have the identities:
L dx
/g@dx = / w(x(s)) X(s) ds = / n x Vo,
c 0 ds s

/Cv-dx - /OLV(ﬁ(s))-C’bjl?dS—/‘sn-curlv,

where n is the unit normal on § that follows the right-hand rule with the directional curve C.

2 Calculus of Variations

2.1 Single variable

Definition 2.1 Let u,v € C?(a,b) and consider a functional

b
Blu] = / f(ua)) e

Then the first variation of this functional with respect to the perturbation v is the first derivative

d

£g0(5) , (€)= Efu + ev).

e=0

Definition 2.2 A function v € Cg°(a,b) if v is smooth, and v and all its derivatives vanish at
x=a and x =b.

Theorem 1 (Localization theorem) Assume f € C(a,b). If

b
/ fodr =0

flz)=0 Vo e (a,b).

for any v € C3°(a,b), then



Problem 1 Consider the functionals:

b b b b b
E[u]:/ cu"dz, /c(u’)2d1:, /cu’ud:v, /c(u")Qda:, /[cl(u’)2+czu]daz,

where u : (a,b) — R and ¢, c1,co are continuous functions. Suppose that the first variation of the
above functionals is equal to zero with respect to any perturbation v € C3°(a,b). Find the differential
equations necessarily satisfied by u.

Solution:
1. If Eu] = fab cu"dx, for a perturbation v € C5°(a,b) the first variation is given by

d b
— = —_— nd
() » i /. c(u+ev)"dx

degp
b

:/ neu” v = 0.
a

Since v € C§°(a, b) is arbitrary, by the localization theorem (i.e., Theorem 1) we infer

=0
e=0

ne(z)u(z)" =0 Vz € (a,b).
2. If Efu] = fab c(u')?dz, for a perturbation v € C§°(a,b) the first variation is given by

d b b
de/ c((u+ ev))?dx =0 = / 2cu'v'dz = 0.

e=0

Integrating by part, we find that

b b b
0 :/ 2cu'v'dr = cu'v|® —/ 2(cu) vdx = —/ 2(cu) vdx.
a a a
Since v € C§°(a, b) is arbitrary, by Theorem 1 we conclude that

(cu) =0, Vo € (a,b).

3. If Flu] = fab cuw'udz, for a perturbation v € C§°(a,b) the first variation is given by

b

b
e c(u+ev)(u+ev)dr =0 = / c(uv’ + u'v)dz = 0.

e=0

Integrating by parts we obtain

b b
cuvlg + / (cu’ = (cu) )vdx = / (cu' = (cu))vdz = 0,
a a
and henceforth, by Theorem 1, arrive at

cu' — (cu) =0, Vz € (a,b)



b

4. If Efu] = [, c(u”)?dz, for a perturbation v € C§°(a, b) the first variation is given by

d b b
ds/ c((u+ ev)")?dx :/ 2cu’v"dz = 0.

Integrating by parts we obtain

e=0

b b
2cu"v'|b — / 2(cu”Y dv = —2(cu”) v|% + / 2(cu”)"vdz = 0.
a a

Therefore, by Theorem 1 we obtain

(c)" =0 Vz € (a,b).

5. If Efu] = fb[cl (u')? + cau]dx, for a perturbation v € C§°(a, b) the first variation is given by

a
d b
de J,
Integrating by parts we obtain

b
c1((u+ev))? + co(u + ev)dz / (2c1uv" + cov)dz = 0.
e=0va

b
2c1u'v[® + / (—2(c1t))" + ex)vdx = 0,
a
which, by Theorem 1, implies
—2(c1u) + =0 Vz € (a,b).
|

Theorem 2 (Necessary conditions for a minimizing function of a functional) Let Efu| be
a functional given by

b
1
Elu] = / [—c1|u/|* + cou)da,

a0 2
where c1,ca are given continuous functions on the interval (a,b). If ug € C*(a,b) is a minimizer
in the sense that for all perturbation v € C3°(a,b) and all € small enough, we have

Elug + ev] > Elug).
Then the minimizer ug satisfies
—(crup) +c2 =0 on (a,b).

Proof: Since ug is a minimizer, the first variation of functional Efug] with respect to any pertur-

bation v € Cp(a,b) should vanish:

b
%(f;[%cl((u +))2 + ca(u + ev)] =0= / (crugv’ + cov)dx = 0.

e=0
Integrating by parts, we have

b
/ [—(c1up)’ + coJvdz =0 Vz € (a,b).

By the localization theorem (c.f. Theorem 1) we conclude that

—(c1ug) +ca =0 Vx € (a,b).



2.2 Multiple variables

Theorem 3 (Necessary conditions for a stationary point of a functional) Let Eu] be a
functional given by

Bl = [ (VW) + f(wldx

where W : R™™ — R and [ : R™ — R are given continuous differentiable functions. If u €
C%(Q;R™) is a stationary point in the sense that for all perturbation v € C§°(€2;R™), we have

d
£E[u + ev] T 0. 4)
Then the stationary state u satisfies
—div[DgW (Vu)] + Dy f(u) =0 in , (5)
where
_ OW(F) _ 0f(u)
Dl (V) i= “—r ‘F:W, Duf() = =5

Proof: From the definition, we have that for any v € C5°(£2; R™),

_ 4
6:O_d€ Q

_ /Q[DFW(Vu) Vv + Duf(u) - v]dx,

d
£E[u+5v]

[W(Vu+ev) + f(u+ev)dx _

where, in index form,

OW (F) df(u)
i =D i = , tp =Dy = ;
7= [DEW (V)i = 52|ty = [Duf ]y = S5
and
d
£E[u+ ev| T QUpiUp,z‘ + tpvpdx

= /(_Up’t}i —i—tp)vpdx,
Q

where the second equality follows from the divergence theorem. Since the test function v €
C§e(2;R™) is arbitrary, by (4) and the localization theorem we obtain

—0Opii+1tp, =0 in €,

which is precisely the index form of (5).



3 Applications in mechanics, physics and geometry

3.1 Hamilton’s principle and equation of motion
3.1.1 Discrete system

For a particle in a conservative force field, i.e., the force on the particle at x is given by
f=-VV(x).

Then the Lagrangian of the particle is given by

and the action functional is

We also specify the initial condition:
X(O) = X0, X(O) = Vy.

The actual motion of the particle shall be a stationary state of the action functional, i.e.,

d
d—gS[x + ex1] T 0.
By divergence theorem, we find
t1 t1
0= mx-X1 —x1 - VV(x)dt = / X1 - (—mx — VV (x)dt Vxi(t)
to to

the localization theorem we conclude that
mx+VV(x)=0 ie mx=f=-VV(x).

For general mechanical system, it may have many degrees of freedom, which are described by
generalized coordinates q = (q1,- - ,qx). Denote by q = (41, - ,qx) the generalized velocity. To
derive the equation of motion by the Hamilton principle, we shall first identify the Lagrangian of
the system( i.e., the kinetic energy minus the potential of the system) in terms of q, §:

L=1Llg,q,t], Sla]= /tl Llq, q,t]dt.

to

The actual motion of the system shall be a stationary state of the action functional, i.e.,

d
—S =0
de [q + qu] I )
which, by the divergence theorem and localization theorem, implies the Lagrange equation:
dor oL _
dtdq oOq

Example 4 Three mass points connected by two rigid bars on a rigid surface.



3.1.2 Hamilton’s principles for elastic continuum bodies
Dynamics of an elastic bar

Consider an elastic bar of length L, area A and Young’s modulus E. Also the two ends are fixed.
The deformation state of the bar is described by the displacement u(x,t). Clearly, the Lagrange of
bar is given by

P, 1 2
L= / —pu” — —FAudx.
o 2 2
Therefore, the action functional of the system is given by

ok 1
Slu] = —pii? — —EAududt.
2 2 v
to 0

The actual equation of motion of the bar shall be a stationary state of the action functional, i.e.,

=0,

e=0

d
d—gS[u%—auﬂ

which, by the divergence theorem and localization theorem, implies the Lagrange equation:
(EAug), = pii.
Similarly we can derive the equation of motion for an elastic string and elastic beam as
(Twy)e = pwy, (Elwee)ex + pwy = 0.
Dynamics of a 3D elastic body

Dynamics of inviscid fluids: Euler equation

Consider a ideal fluid in domain €y C R3. The state is described by motion x(-,t) : Qo — Q4. The
Lagrangain is given by

Dl = [ (GoivE + pex = [ [SolGx(X0P + pg-x(X.0)]ax
Because of incompressibility, we have
divv =0 in §,
which, together with the conservation of mass
pt +div(pv) =0,
implies

dp(x,1t)

i 0.

Method of Lagrange’s multiplier



3.2 Principle of minimum free energy

In thermodynamics, the Second Law asserts that the entropy of a closed (no energy flux across
the boundary) isolated (no particle flux across the boundary) system is monotonically increasing
and attains its maximum in equilibrium. For a system in contact with a heat bath at a constant
temperature, the Second Law implies the principle of minimum free energy, i.e., the free energy
of an isolated system at a constant temperature shall be monotonically decreasing and reach its
minimum in equilibrium.

For most of elastic problem the system is tacitly assumed to be at constant temperature and
hence no heat flux occurs during the process. An exception includes plasticity where dissipation
becomes significant. The equilibrium equations for the system follow directly from calculus of
variation once the total free energy of the system is identified (or postulated). For example, in 3D
linearized elasticity we describe the thermodynamic state of the elastic body €2 by displacement
u: Q — R3. The boundary of the body 9 is subdivided into I'p and I'y; the Dirichlet boundary
condition u = ug on I'p is imposed whereas a Neumann-type boundary condition applied traction=
to on I'y. In this setup, the free energy of the system can be identified as

F[u]:/Q[W(Vu)—b~u]dv—/FNt0-uds,

where the internal energy density function W : R3*3 — R is given by
1
W(Vu) = —2Vu -CVu.
For a equilibrium state we have

d
—Flu+euy] =0  Vadmissible uj.
de e=0

The above first-variation condition implies the standard boundary value problem in linearized
elasticity:

—div(CVu) =b in Q,
(CVu)n =t on I'y,

u=ug on I'p.

3.3 Minimal surface

Consider a space curve C that can be parameterized as

Z:fo(l',y), (xvy) 6CP7

where C, is the planar curve on the xy-plane. Assume that Cp is a simple closed curve and denote
by Qp the enclosed area. We are interested in surfaces that have minimum surface area among all
surfaces with C as the boundary.

For simplicity, we restrict ourselves to surfaces that admit Monge parametrization z = w(z, y).
The area functional A[w] is then given by

Alw] :/Q (14 |Vw|?)?)dzdy.

10



The Euler-Lagrange equation is given by

div[ﬂ} =0 in Qp,

V14 [Vuw|?

w = folz,) on Cp.
We remark that the first of the above equation is equivalent to

H = mean curvature = 0 on Qp.

11



3.4 Geodesics on a curved surface

Consider a surface element given by
2P = 2P (ut,u?), (p=1,2,3) V(ut,u?) € U Cc R%
Then
ds? = dxPSpdz? = g;jdu’du?, (6)
where the metric tensor

q

L — P
9ij = w7i5pq3:7j.

Consider two fixed points A and B on the surface S, we are interested in the curve that have A, B
as two end points and have minimum curve length.
From (6), the length of curves on § is given by

L du® du?
1 2 _ _ou aus g9
Ll (@), 0] = [ (o G )

Without loss of generality, we may choose an arc-length parametrization such that

dut du’
W) =i =

If not, we change the parametrization to ¢ = fg ~/ 2(s)ds. Then the curve with minimum curve
length shall satisfy

0= iL[ul(t) + evl (1), u? (t) 4 v?(t)]

de =
1 [ du’ du® . du? dv'
= — Py p— 20 —— ——|dt
2/0 g ¥+ 295 g g
1 [E dut du? I du? du®
= 5 i'm77_2 mj 3,9 mi,k™ 73, 1, "t
2/0 Lgism =g =g = 2lomi=g + 9min=g 510

where we have used
i[ @v’} _Uii[ @ + @ﬂ
dt gy T g Y T I g e
and

d du? d?u? dud du®

a9 g V= 90 g T 9k gy g

Therefore, the equation for geodesics is given by

du® du? d*u’ du? du®
Gism gy g~ 2m g Tk g1 =0

which is equivalent to

aiz 9 g \Imak T Gk T Gikem )" g g T T Tk g gy

12



3.5 Ginzburg-Landau model

In the Ginzburg-Landau model of phase transition, the thermodynamic state of the system is
described by an order parameter ¢ : 2 — R and the free energy is given by

K
Flol = [ [§IV6F +ag?(1 - )] av
The equilibrium state shall be such that

d
£F[¢ + ey

The above variational principle implies the following Euler-Lagrange equation:

=0 Y.
0 ¥

E=

— kAP — dag® + 2a¢p = 0 in Q.

3.6 Variational principle for electrodynamics

The classic Maxwell equations in vacuum are given by (in SI unit)

V-D =p, VXE+%—B:0, D = ¢E,
" ob (7)
V-B =0, VxH:J—i—E, B = yoH.

Since V - B = 0, we can have V x A = B, and hence

0

Therefore, we have E + %A = —V. In other words, there exist (¢, A) : R® — R x R3 such that

E:—Vgp—%A, B=VxA,

and two of the Maxwell equations are automatically satisfied. Then in vacuum the rest of Maxwell
equations can be obtained as the Euler-Lagrange equations of the variational principle:

d
dfgS[A‘i_EAlagp—i_E@l}:O VAI;S017 (8)

where
SIA,¢] = —/tl / (CBP — C[B -~ pp - At
to R3 2 21“’0

11 1
:—/ / {E—O\Vw—l—At\Q——W><A]2—pg0+J-A]dxdt
to R3 2 2,“’0

By standard first-variation calculus, we find the Euler-Lagrange equations of (8) are given by

1 0
V-l—e(Ve+A)]—p=0, —M—V x V x A+ g[—eo(V<p—l—At) +J=0,
0

which is precisely equivalent to

V-D =p, VXH:J+%D.

13



Question

Can we interpret

1
K.E. = [—|V><A\2—J-A]dx,
R3 L2400

P.E.:/ [6—0|V@+At|2—pgp}dx
Rr3 L2

as the kinetic energy and potential energy, respectively? What would be their implication for
materials /collections of charges?
Free charges moving in space:

e Internal energy U = 0;
e Kinetic energy: [os 3p|v|?
e Potential energy:

4-space formulation of electrodynamics.  We introduce Minkovski space R equipped with
inner probduct

<a, b> = nyual/b'u,

where the metric tensor 7,,, = diag(4+1, -1, —1, —1). The coordinates of a point in RS is identified
as
z¥ = (ct,zt, 2%, 23).
Let
J = (cp, JH, J%, T3, AY = (p,cAl cA? cA®).

Then

0
FP = 92 AP — 9P A* = 9, A% — 1, A" = gi ng _COBZ _CcBé; :

E., —cB, cB; 0

and Fog = naungu ™, ie.,

— — = v V: -
Fop = 0adg = Osda = 0amp A" = Oma A" = | _p' g o _cp,

By (9), the action functional can be rewritten as

S[AY] = / L(A)dz
RL,3
where the Lagrange density function is indentified as

1 1
,[60 CauﬁyaaAyaﬁAy + EJVAV]’

1[60 €
c 2

14 (0% 1 14
LAY = [ F 5Fa5+gJ,,A | =

where

Cauﬁu _ naﬁnuy o naynuﬁ'

14



Excercise

1. Assume ¢, v, u, T : Q — R/R" R" Lin(R",R™), w : Q@ — R™ are smooth fields on .
Show the following identities by indicial notation.

(a) V(pv) =v@ (Vo) +¢Vv;
(b dlv(gov) (Vo) - v+ pdivy; V-v=divv

(c) V(v-u) = (Vv)Tu+ (Vu)lv
(d dlv(v ®u) = vdiv(u) + (Vv)u
(e) div(TTw) =T -Vw + w - divT
(f) div(¢T) = @divT + TV

(g) VxVp=0.

(h) div(V xv) =0.

(i) Ifa,b,ceR3 ax (bxc)=(a-c)b—(a-b)c
(j X (Vxv)=V(V-v)—Av.

(k) (Vxv)xa=[Vv—(Vv)]a

2. Compute the first-variation and assoicated Euler-Lagrange equations for the following func-
tionals:

)
)
)
)
)
)
)
)
)
)V
)

(a) Bending of an elastic rod:

L 2w
FW4:ﬂA [1EIC§2) 4 qulda,

where w : (0, L) — R satisfies w(0) = w(L) = w'(0) = w'(L) = 0 (clamped boundary
conditions).
(b) Bending of a plate:

Flw] = /Q[/g’\VVw\Q—i—?det(VVw)]dx,

where w : R? D Q) — R satisfies w = n- Vw = 0 on 99 (clamped boundary conditions).
(¢) 3D elasticity:

Flu] = / (W(Vu) —b - u]dv — / to - uds,
Q I'n
where the internal energy density function W : R3*3 — R is given by
1 1
W(Vu) = —2Vu -CVu = —QCpl-qjumuqJ,
and displacement u : R3 D Q — R3 satisfies u = up on 99 (ug : 92 — R3 is given).
(d) G-L model for superconductivity:

Flo.Al= [ [5I(V iAol + o7 + |

1
—gbﬂ dv + / IV x Al2dv,
4 210 Jgs
where k, «, 8, o are real constants, ¢ : 2 — C is wave function satisfying ¢ = 0 on 0f2,

and A : R? — R is the vectorial potential for magnetic field and satisfies |A|, |[VA| — 0
as |x| — +o0.

15



(e) Minimum surface:
Alwl = [ (14 [VuP) ) dady,
Qp

where w : R? D Qp — R satisfies w = fo(z,y) on 9Qp (ie., 2 = fo(x,y) is the fixed
boundary curve of the surface).

(f) Weighted minimum surface:
a 12 2 w2
Alw] :/ e )(1+\Vw]2)1/2)dxdy,
Qp

where w : R? D Qp — R satisfies w = fo(x,y) on 9Qp (i.e., z = fo(z,y) is the fixed
boundary curve of the surface).

(g) Geodesics:

I oo
du' du’
L[u* (), u*(t :/ i —dt
N
where g;; is the given metric tensor, and (u!,u?) : (0,L) — R? satisfies (u!,u?)|y =
(uly 1) amd (a0 = (i 1)

(h) Electrodynamics:
t1 1
S[A,so]z—/ / [%IEI2—2—\B|2—p<p+J~A}dxdt
to R3 H0
t1 1
=—/ / [%OIWMAA?—Q—!VxA\2—p<p+J-A}dxdt,
to R3 Mo

where (A, ) : R3 x (to,t1) — (R3,R) are smooth, and (all derivatives) vanish as |x| —
+-00.

16
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