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1 Divergence Theorem for scalar, vector and tensor fields

Tensor Fields Let Ω ⊂ R
n be an open domain.

• ϕ : Ω → R is a scalar field;

• v : Ω → R
m is a vector field;

• T : Ω → Lin(Rm,Rk) is a tensor field.

Notation convention: it is often convenient to denote vectors and tensors in index notation, e.g., vi
(vi = v · ei) and Tpi (Tpi = êpTei), where the bases {êp, p = 1, · · · ,m} and {ei, i = 1, · · · , n} are
usually not specified but tacitly understood.
Differentiation Let ϕ be a scalar field on Ω ⊂ R

n. For any a ∈ R
n,

Dϕ(x) : Rn → R,

(Dϕ(x))(a) = lim
ε→0

ϕ(x+ εa)− ϕ(x)

ε
.

Definition: ϕ is differentiable on Ω if Dϕ(x) ∈ Lin(Rn,R) for all x ∈ Ω

ϕ(x+ εa) = ϕ(x) + ε(Dϕ(x))(a) + o(ε)

= ϕ(x) + ε∇ϕ(x) · a+ o(ε) ∀x ∈ Ω,a ∈ R
n.

and

∇ϕ(x) =
n
∑

i=1

ϕ,iei, ϕ,i = ei · ∇ϕ = lim
ε→0

ϕ(x+ εei)− ϕ(x)

ε
=

∂ϕ(x1e1 + · · ·+ xnen)

∂xi
.

Definition: v : Ω → R
m is differentiable on Ω if every component is differentiable

v(x) =
∑

p

vp(x)êp .

Definition:

∇v(x) = Dv(x) : Rn → R
m

(∇v(x))(a) =
m
∑

p=1

êp∇vp(x) · a
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Thus,

∇v(x) =
∑

p,i

vp,iêp ⊗ ei .

Divergence: If m = n, div(v) = Tr(∇v), i.e.,

div(v) = vi,iei · ei = vi,i.

Further, if T : Ω → Lin(Rn,Rm) and

T(x) = Tpiêp ⊗ ei.

Then

div(T) : Rm → R

div(T)(a) = Tpi,ia · êp.

One may identify div(T) with a vector field Ω → R
m (instead of Lin(Rm,R)). With an abuse of

notation, we write

div(T) = Tpi,iêp.

Field of class C0, C1, C2, · · · , C∞

� Claim: Assume ϕ, v, u, T : Ω → R,Rn,Rn,Lin(Rn,Rm), w : Ω → R
m are smooth fields on

Ω. The following identities hold:

1. ∇(ϕv) = v ⊗ (∇ϕ) + ϕ∇v;

2. div(ϕv) = (∇ϕ) · v + ϕdivv; ∇ · v = divv

3. ∇(v · u) = (∇v)Tu+ (∇u)Tv

4. div(v ⊗ u) = vdiv(u) + (∇v)u

5. div(TTw) = T · ∇w +w · divT

6. div(ϕT) = ϕdivT+T∇ϕ

Proof: Tacitly, an orthonormal basis {e1, · · · , en} ⊂ R
n and an orthonormal basis {ê1, · · · , êm} ⊂

R
m are chosen and fixed. Notation: Einstein summation, i.e., summation over double index is

understood. For example, to show 5, we have

div(TTw) = (Tpiwp),i = Tpi,iwp + Tpiwp,i = w · divT+T · ∇w
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Curl operator: Let v : Ω → R
3.

curlv = ∇× v =

∣

∣

∣

∣

∣

∣

e1 e2 e3
∂1 ∂2 ∂3
v1 v2 v3

∣

∣

∣

∣

∣

∣

=
3

∑

i=1

Eijkvk,jei,

where Levi-Civita symbol is defined as

Eijk =











1 if (ijk) = (123), (231), (312),

−1 if (ijk) = (132), (213), (321),

0 otherwise.

We notice that Eijk is antisymmetric, i.e.,

Eijk = −Eikj , Eijk = −Ejik, etc.

A useful identity between Kronecker symbol and Levi-Civita symbol is

EpijEpkl = δikδjl − δilδjk.

Let Ω ⊂ R
3 be a domain in R

3. Assume that v : Ω → R
3, ϕ : Ω → R are smooth fields.

� Claim: the following identities hold:

1. ∇×∇ϕ = 0.

2. div(∇× v) = 0.

3. If a,b, c ∈ R
3, a× (b× c) = (a · c)b− (a · b)c

4. ∇× (∇× v) = ∇(∇ · v)−∆v.

5. (∇× v)× a = [∇v − (∇v)T ]a.

6. div(u×∇× v) = (∇× v) · (∇× u)− u · (∇×∇× v).

Proof:

Divergence Theorem
Let Ω be a smooth simply connected domain in R

n, v : Ω → R
m is a smooth vector field on Ω.

Then we have
∫

∂Ω
v ⊗ n da =

∫

Ω

∇vdv, (1)

where n : ∂Ω → R
n is the outward unit normal on the boundary ∂Ω. If m = n, take the trace of

Eq. (1), we have

∫

∂Ω
v · n da =

∫

Ω

divvdv. (2)
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For a smooth tensor field T : Ω → Lin(Rn;Rm), we have

∫

∂Ω
Tn da =

∫

Ω

divTdv. (3)

� Provide a heuristic proof for (1) with Ω being a rectangle in two dimensions.

Implications of divergence theorem in physics and mechanics

1. Gauss theorem.

2. Stokes theorem or Green formula. In R
3, let C be a directional closed space curve given by

{x̂(s) : s ∈ [0, L]}, s is the arc-length parameter, S be a curved surface with C being its
boundary, and ϕ, (v) be smooth scalar (vector) field defined on the entire space. Then we
have the identities:

∫

C

ϕdx :=

∫ L

0

ϕ(x̂(s))
dx̂(s)

ds
ds =

∫

S

n×∇ϕ,

∫

C

v · dx :=

∫ L

0

v(x̂(s)) ·
dx̂(s)

ds
ds =

∫

S

n · curlv,

where n is the unit normal on S that follows the right-hand rule with the directional curve C.

2 Calculus of Variations

2.1 Single variable

Definition 2.1 Let u, v ∈ C2(a, b) and consider a functional

E[u] =

∫ b

a
f(u(x))dx.

Then the first variation of this functional with respect to the perturbation v is the first derivative

d

dε
ϕ(ε)

∣

∣

∣

∣

ε=0

, ϕ(ε) := E[u+ εv].

Definition 2.2 A function v ∈ C∞
0
(a, b) if v is smooth, and v and all its derivatives vanish at

x = a and x = b.

Theorem 1 (Localization theorem) Assume f ∈ C(a, b). If

∫ b

a
fvdx = 0

for any v ∈ C∞
0
(a, b), then

f(x) = 0 ∀x ∈ (a, b).

4



Problem 1 Consider the functionals:

E[u] =

∫ b

a
cundx,

∫ b

a
c(u′)2dx,

∫ b

a
cu′udx,

∫ b

a
c(u′′)2dx,

∫ b

a
[c1(u

′)2 + c2u]dx,

where u : (a, b) → R and c, c1, c2 are continuous functions. Suppose that the first variation of the

above functionals is equal to zero with respect to any perturbation v ∈ C∞
0
(a, b). Find the differential

equations necessarily satisfied by u.

Solution:

1. If E[u] =
∫ b
a cundx, for a perturbation v ∈ C∞

0
(a, b) the first variation is given by

d

dε
ϕ(ε)

∣

∣

∣

∣

ε=0

=
d

dε

∫ b

a
c(u+ εv)ndx

∣

∣

∣

∣

ε=0

= 0

⇒

∫ b

a
ncun−1v = 0.

Since v ∈ C∞
0
(a, b) is arbitrary, by the localization theorem (i.e., Theorem 1) we infer

nc(x)u(x)n−1 = 0 ∀x ∈ (a, b).

2. If E[u] =
∫ b
a c(u′)2dx, for a perturbation v ∈ C∞

0
(a, b) the first variation is given by

d

dε

∫ b

a
c((u+ εv)′)2dx

∣

∣

∣

∣

ε=0

= 0 ⇒

∫ b

a
2cu′v′dx = 0.

Integrating by part, we find that

0 =

∫ b

a
2cu′v′dx = cu′v|ba −

∫ b

a
2(cu′)′vdx = −

∫ b

a
2(cu′)′vdx.

Since v ∈ C∞
0
(a, b) is arbitrary, by Theorem 1 we conclude that

(cu′)′ = 0, ∀x ∈ (a, b).

3. If E[u] =
∫ b
a cu′udx, for a perturbation v ∈ C∞

0
(a, b) the first variation is given by

d

dε

∫ b

a
c(u+ εv)′(u+ εv)dx

∣

∣

∣

∣

ε=0

= 0 ⇒

∫ b

a
c(uv′ + u′v)dx = 0.

Integrating by parts we obtain

cuv|ba +

∫ b

a
(cu′ − (cu)′)vdx =

∫ b

a
(cu′ − (cu)′)vdx = 0,

and henceforth, by Theorem 1, arrive at

cu′ − (cu)′ = 0, ∀x ∈ (a, b)
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4. If E[u] =
∫ b
a c(u′′)2dx, for a perturbation v ∈ C∞

0
(a, b) the first variation is given by

d

dε

∫ b

a
c((u+ εv)′′)2dx

∣

∣

∣

∣

ε=0

=

∫ b

a
2cu′′v′′dx = 0.

Integrating by parts we obtain

2cu′′v′|ba −

∫ b

a
2(cu′′)′dv = −2(cu′′)′v|ba +

∫ b

a
2(cu′′)′′vdx = 0.

Therefore, by Theorem 1 we obtain

(cu′′)′′ = 0 ∀x ∈ (a, b).

5. If E[u] =
∫ b
a [c1(u

′)2 + c2u]dx, for a perturbation v ∈ C∞
0
(a, b) the first variation is given by

d

dε

∫ b

a
c1((u+ εv)′)2 + c2(u+ εv)dx

∣

∣

∣

∣

ε=0

∫ b

a
(2c1u

′v′ + c2v)dx = 0.

Integrating by parts we obtain

2c1u
′v|ba +

∫ b

a
(−2(c1u

′)′ + c2)vdx = 0,

which, by Theorem 1, implies

−2(c1u
′)′ + c2 = 0 ∀x ∈ (a, b).

Theorem 2 (Necessary conditions for a minimizing function of a functional) Let E[u] be
a functional given by

E[u] =

∫ b

a
[
1

2
c1|u

′|2 + c2u]dx,

where c1, c2 are given continuous functions on the interval (a, b). If u0 ∈ C2(a, b) is a minimizer

in the sense that for all perturbation v ∈ C∞
0
(a, b) and all ε small enough, we have

E[u0 + εv] ≥ E[u0].

Then the minimizer u0 satisfies

−(c1u
′
0)

′ + c2 = 0 on (a, b).

Proof: Since u0 is a minimizer, the first variation of functional E[u0] with respect to any pertur-
bation v ∈ C0(a, b) should vanish:

d
dε(

∫ b
a [

1

2
c1((u+ ε)′)2 + c2(u+ εv)]

∣

∣

∣

∣

ε=0

= 0 ⇒

∫ b

a
(c1u

′
0v

′ + c2v)dx = 0.

Integrating by parts, we have
∫ b

a
[−(c1u

′
0)

′ + c2]vdx = 0 ∀x ∈ (a, b).

By the localization theorem (c.f. Theorem 1) we conclude that

−(c1u
′
0)

′ + c2 = 0 ∀x ∈ (a, b).
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2.2 Multiple variables

Theorem 3 (Necessary conditions for a stationary point of a functional) Let E[u] be a

functional given by

E[u] =

∫

Ω

[W (∇u) + f(u)]dx,

where W : Rn×m → R and f : Rm → R are given continuous differentiable functions. If u ∈
C2(Ω;Rm) is a stationary point in the sense that for all perturbation v ∈ C∞

0
(Ω;Rm), we have

d

dε
E[u+ εv]

∣

∣

∣

ε=0

= 0. (4)

Then the stationary state u satisfies

−div[DFW (∇u)] +Duf(u) = 0 in Ω, (5)

where

DFW (∇u) :=
∂W (F)

∂F

∣

∣

∣

F=∇u

, Duf(u) :=
∂f(u)

∂u
.

Proof: From the definition, we have that for any v ∈ C∞
0
(Ω;Rm),

d

dε
E[u+ εv]

∣

∣

∣

ε=0

=
d

dε

∫

Ω

[W (∇u+ εv) + f(u+ εv)]dx
∣

∣

∣

ε=0

=

∫

Ω

[DFW (∇u) · ∇v) +Duf(u) · v]dx,

where, in index form,

σpi := [DFW (∇u)]pi =
∂W (F)

∂Fpi

∣

∣

∣

F=∇u

, tp := [Duf(u)]p =
∂f(u)

∂up
,

and

d

dε
E[u+ εv]

∣

∣

∣

ε=0

=

∫

Ω

σpivp,i + tpvpdx

=

∫

Ω

(−σpi,i + tp)vpdx,

where the second equality follows from the divergence theorem. Since the test function v ∈
C∞
0
(Ω;Rm) is arbitrary, by (4) and the localization theorem we obtain

−σpi,i + tp = 0 in Ω,

which is precisely the index form of (5).
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3 Applications in mechanics, physics and geometry

3.1 Hamilton’s principle and equation of motion

3.1.1 Discrete system

For a particle in a conservative force field, i.e., the force on the particle at x is given by

f = −∇V (x).

Then the Lagrangian of the particle is given by

L[x] =
1

2
m|ẋ|2 − V (x),

and the action functional is

S[x] =

∫ t1

t0

1

2
m|ẋ|2 − V (x)dt.

We also specify the initial condition:

ẋ(0) = x0, ẍ(0) = v0.

The actual motion of the particle shall be a stationary state of the action functional, i.e.,

d

dε
S[x+ εx1]

∣

∣

∣

ε=0

= 0.

By divergence theorem, we find

0 =

∫ t1

t0

mẋ · ẋ1 − x1 · ∇V (x)dt =

∫ t1

t0

x1 · (−mẍ−∇V (x)dt ∀x1(t)

the localization theorem we conclude that

mẍ+∇V (x) = 0 i.e. mẍ = f = −∇V (x).

For general mechanical system, it may have many degrees of freedom, which are described by
generalized coordinates q = (q1, · · · , qk). Denote by q̇ = (q̇1, · · · , q̇k) the generalized velocity. To
derive the equation of motion by the Hamilton principle, we shall first identify the Lagrangian of
the system( i.e., the kinetic energy minus the potential of the system) in terms of q, q̇:

L = L[q, q̇, t], S[q] =

∫ t1

t0

L[q, q̇, t]dt.

The actual motion of the system shall be a stationary state of the action functional, i.e.,

d

dε
S[q+ εq1]

∣

∣

∣

ε=0

= 0,

which, by the divergence theorem and localization theorem, implies the Lagrange equation:

d

dt

∂L

∂q̇
−

∂L

∂q
= 0.

Example 4 Three mass points connected by two rigid bars on a rigid surface.
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3.1.2 Hamilton’s principles for elastic continuum bodies

Dynamics of an elastic bar

Consider an elastic bar of length L, area A and Young’s modulus E. Also the two ends are fixed.
The deformation state of the bar is described by the displacement u(x, t). Clearly, the Lagrange of
bar is given by

L =

∫ L

0

1

2
ρu̇2 −

1

2
EAu2xdx.

Therefore, the action functional of the system is given by

S[u] =

∫ t1

t0

∫ L

0

1

2
ρu̇2 −

1

2
EAu2xdxdt.

The actual equation of motion of the bar shall be a stationary state of the action functional, i.e.,

d

dε
S[u+ εu1]

∣

∣

∣

ε=0

= 0,

which, by the divergence theorem and localization theorem, implies the Lagrange equation:

(EAux)x = ρü.

Similarly we can derive the equation of motion for an elastic string and elastic beam as

(Twx)x = ρwtt, (EIwxx)xx + ρwtt = 0.

Dynamics of a 3D elastic body

Dynamics of inviscid fluids: Euler equation

Consider a ideal fluid in domain Ω0 ⊂ R
3. The state is described by motion x(·, t) : Ω0 → Ωt. The

Lagrangain is given by

L[x] =

∫

Ω

[
1

2
ρ|v|2 + ρg · x] =

∫

Ω

[ 1

2
ρ|

d

dt
x(X, t)|2 + ρg · x(X, t)

]

dX

Because of incompressibility, we have

divv = 0 in Ω,

which, together with the conservation of mass

ρt + div(ρv) = 0,

implies

dρ(x, t)

dt
= 0.

Method of Lagrange’s multiplier
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3.2 Principle of minimum free energy

In thermodynamics, the Second Law asserts that the entropy of a closed (no energy flux across
the boundary) isolated (no particle flux across the boundary) system is monotonically increasing
and attains its maximum in equilibrium. For a system in contact with a heat bath at a constant
temperature, the Second Law implies the principle of minimum free energy, i.e., the free energy
of an isolated system at a constant temperature shall be monotonically decreasing and reach its
minimum in equilibrium.

For most of elastic problem the system is tacitly assumed to be at constant temperature and
hence no heat flux occurs during the process. An exception includes plasticity where dissipation
becomes significant. The equilibrium equations for the system follow directly from calculus of
variation once the total free energy of the system is identified (or postulated). For example, in 3D
linearized elasticity we describe the thermodynamic state of the elastic body Ω by displacement
u : Ω → R

3. The boundary of the body ∂Ω is subdivided into ΓD and ΓN ; the Dirichlet boundary
condition u = u0 on ΓD is imposed whereas a Neumann-type boundary condition applied traction=
t0 on ΓN . In this setup, the free energy of the system can be identified as

F [u] =

∫

Ω

[W (∇u)− b · u]dv −

∫

ΓN

t0 · uds,

where the internal energy density function W : R3×3 → R is given by

W (∇u) =
1

2
∇u ·C∇u.

For a equilibrium state we have

d

dε
F [u+ εu1]

∣

∣

∣

ε=0

= 0 ∀ admissible u1.

The above first-variation condition implies the standard boundary value problem in linearized
elasticity:











− div(C∇u) = b in Ω,

(C∇u)n = t0 on ΓN ,

u = u0 on ΓD.

3.3 Minimal surface

Consider a space curve C that can be parameterized as

z = f0(x, y), (x, y) ∈ CP ,

where Cp is the planar curve on the xy-plane. Assume that CP is a simple closed curve and denote
by ΩP the enclosed area. We are interested in surfaces that have minimum surface area among all
surfaces with C as the boundary.

For simplicity, we restrict ourselves to surfaces that admit Monge parametrization z = w(x, y).
The area functional A[w] is then given by

A[w] =

∫

ΩP

(1 + |∇w|2)1/2)dxdy.
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The Euler-Lagrange equation is given by











div
[ ∇w
√

1 + |∇w|2

]

= 0 in ΩP ,

w = f0(x, y) on CP .

We remark that the first of the above equation is equivalent to

H = mean curvature = 0 on ΩP .
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3.4 Geodesics on a curved surface

Consider a surface element given by

xp = xp(u1, u2), (p = 1, 2, 3) ∀ (u1, u2) ∈ U ⊂ R
2.

Then

ds2 = dxpδpqdx
q = gijdu

iduj , (6)

where the metric tensor

gij = x
p
,iδpqx

q
,j .

Consider two fixed points A and B on the surface S, we are interested in the curve that have A,B

as two end points and have minimum curve length.
From (6), the length of curves on S is given by

L[u1(t), u2(t)] =

∫ L

0

(gij
dui

dt

duj

dt
)1/2dt.

Without loss of generality, we may choose an arc-length parametrization such that

γ(t) = gij
dui

dt

duj

dt
= 1.

If not, we change the parametrization to t′ =
∫ t
0
γ1/2(s)ds. Then the curve with minimum curve

length shall satisfy

0 =
d

dε
L[u1(t) + εv1(t), u2(t) + εv2(t)]

∣

∣

∣

ε=0

=
1

2

∫ L

0

[gij,k
duj

dt

dui

dt
vk + 2gij

duj

dt

dvi

dt
]dt

=
1

2

∫ L

0

{gij,m
dui

dt

duj

dt
− 2[gmj

d2uj

dt2
+ gmj,k

duj

dt

duk

dt
]}vmdt

where we have used

d

dt
[gij

duj

dt
vi] = vi

d

dt
[gij

duj

dt
] + gij

duj

dt

dvi

dt

and

d

dt
[gij

duj

dt
] = gij

d2uj

dt2
+ gij,k

duj

dt

duk

dt
= 0.

Therefore, the equation for geodesics is given by

gij,m
dui

dt

duj

dt
− 2[gmj

d2uj

dt2
+ gmj,k

duj

dt

duk

dt
] = 0,

which is equivalent to

d2ui

dt2
+ gim

1

2
(gmj,k + gmk,j − gjk,m)

duj

dt

duk

dt
=

d2ui

dt2
+ Γi

jk

duj

dt

duk

dt
= 0.
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3.5 Ginzburg-Landau model

In the Ginzburg-Landau model of phase transition, the thermodynamic state of the system is
described by an order parameter φ : Ω → R and the free energy is given by

F [φ] =

∫

Ω

[κ

2
|∇φ|2 + aφ2(1− φ2)

]

dv.

The equilibrium state shall be such that

d

dε
F [φ+ εϕ]

∣

∣

∣

ε=0

= 0 ∀ϕ.

The above variational principle implies the following Euler-Lagrange equation:

−κ∆φ− 4aφ3 + 2aφ = 0 in Ω.

3.6 Variational principle for electrodynamics

The classic Maxwell equations in vacuum are given by (in SI unit)

∇ ·D = ρ, ∇×E+
∂B

∂t
= 0, D = ǫ0E,

∇ ·B = 0, ∇×H = J+
∂D

∂t
, B = µ0H.

(7)

Since ∇ ·B = 0, we can have ∇×A = B, and hence

∇× (E+
∂

∂t
A) = 0.

Therefore, we have E+ ∂
∂tA = −∇ϕ. In other words, there exist (ϕ,A) : R3 → R× R

3 such that

E = −∇ϕ−
∂

∂t
A, B = ∇×A,

and two of the Maxwell equations are automatically satisfied. Then in vacuum the rest of Maxwell
equations can be obtained as the Euler-Lagrange equations of the variational principle:

d

dε
S[A+ εA1, ϕ+ εϕ1] = 0 ∀ A1, ϕ1, (8)

where

S[A, ϕ] = −

∫ t1

t0

∫

R3

[ǫ0

2
|E|2 −

1

2µ0

|B|2 − ρϕ+ J ·A
]

dxdt

= −

∫ t1

t0

∫

R3

[ǫ0

2
|∇ϕ+At|

2 −
1

2µ0

|∇ ×A|2 − ρϕ+ J ·A
]

dxdt

(9)

By standard first-variation calculus, we find the Euler-Lagrange equations of (8) are given by

∇ · [−ǫ0(∇ϕ+At)]− ρ = 0, −
1

µ0

∇×∇×A+
∂

∂t
[−ǫ0(∇ϕ+At) + J = 0,

which is precisely equivalent to

∇ ·D = ρ, ∇×H = J+
∂

∂t
D.
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Question

Can we interpret

K.E. =

∫

R3

[ 1

2µ0

|∇ ×A|2 − J ·A
]

dx,

P.E. =

∫

R3

[ǫ0

2
|∇ϕ+At|

2 − ρϕ
]

dx

as the kinetic energy and potential energy, respectively? What would be their implication for
materials /collections of charges?

Free charges moving in space:

• Internal energy U ≡ 0;

• Kinetic energy:
∫

R3
1

2
ρ|v|2

• Potential energy:

4-space formulation of electrodynamics. We introduce Minkovski space R1,3 equipped with
inner probduct

〈a,b〉 = ηνµa
νbµ,

where the metric tensor ηνµ = diag(+1,−1,−1,−1). The coordinates of a point in R
1,3 is identified

as

xν = (ct, x1, x2, x3).

Let

Jν = (cρ, J1, J2, J3), Aν = (ϕ, cA1, cA2, cA3).

Then

Fαβ = ∂αAβ − ∂βAα = ηαν∂νA
β − ηβν∂νA

α =









0 −Ex −Ey −Ez

Ex 0 −cBz cBy

Ey cBz 0 −cBx

Ez −cBy cBx 0









,

and Fαβ = ηανηβµF
νµ, i.e.,

Fαβ = ∂αAβ − ∂βAα = ∂αηβνA
ν − ∂βηανA

ν =









0 Ex Ey Ez

−Ex 0 −cBz cBy

−Ey cBz 0 −cBx

−Ez −cBy cBx 0









.

By (9), the action functional can be rewritten as

S[Aν ] =

∫

R1,3

L(Aν)d4x

where the Lagrange density function is indentified as

L[Aν ] =
1

c
[
ǫ0

4
FαβFαβ +

1

c
JνA

ν ] =
1

c
[
ǫ0

2
Cαµβν∂αAµ∂βAν +

1

c
JνAν ],

where

Cαµβν = ηαβηµν − ηανηµβ .
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Excercise

1. Assume ϕ, v, u, T : Ω → R,Rn,Rn,Lin(Rn,Rm), w : Ω → R
m are smooth fields on Ω.

Show the following identities by indicial notation.

(a) ∇(ϕv) = v ⊗ (∇ϕ) + ϕ∇v;

(b) div(ϕv) = (∇ϕ) · v + ϕdivv; ∇ · v = divv

(c) ∇(v · u) = (∇v)Tu+ (∇u)Tv

(d) div(v ⊗ u) = vdiv(u) + (∇v)u

(e) div(TTw) = T · ∇w +w · divT

(f) div(ϕT) = ϕdivT+T∇ϕ

(g) ∇×∇ϕ = 0.

(h) div(∇× v) = 0.

(i) If a,b, c ∈ R
3, a× (b× c) = (a · c)b− (a · b)c

(j) ∇× (∇× v) = ∇(∇ · v)−∆v.

(k) (∇× v)× a = [∇v − (∇v)T ]a.

2. Compute the first-variation and assoicated Euler-Lagrange equations for the following func-
tionals:

(a) Bending of an elastic rod:

F [w] =

∫ L

0

[
1

2
EI(

d2w

dx2
)2 + qw]dx,

where w : (0, L) → R satisfies w(0) = w(L) = w′(0) = w′(L) = 0 (clamped boundary
conditions).

(b) Bending of a plate:

F [w] =

∫

Ω

[
κb

2
|∇∇w|2 +

κg

2
det(∇∇w)]dx,

where w : R2 ⊃ Ω → R satisfies w = n · ∇w = 0 on ∂Ω (clamped boundary conditions).

(c) 3D elasticity:

F [u] =

∫

Ω

[W (∇u)− b · u]dv −

∫

ΓN

t0 · uds,

where the internal energy density function W : R3×3 → R is given by

W (∇u) =
1

2
∇u ·C∇u =

1

2
Cpiqjup,iuq,j ,

and displacement u : R3 ⊃ Ω → R
3 satisfies u = u0 on ∂Ω (u0 : ∂Ω → R

3 is given).

(d) G-L model for superconductivity:

F [φ,A] =

∫

Ω

[k

2
|(∇− iA)φ|2 +

α

2
φ2 +

β

4
φ4

]

dv +
1

2µ0

∫

R3

|∇ ×A|2dv,

where k, α, β, µ0 are real constants, φ : Ω → C is wave function satisfying φ = 0 on ∂Ω,
and A : R3 → R

3 is the vectorial potential for magnetic field and satisfies |A|, |∇A| → 0
as |x| → +∞.
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(e) Minimum surface:

A[w] =

∫

ΩP

(1 + |∇w|2)1/2)dxdy,

where w : R2 ⊃ ΩP → R satisfies w = f0(x, y) on ∂ΩP (i.e., z = f0(x, y) is the fixed
boundary curve of the surface).

(f) Weighted minimum surface:

A[w] =

∫

ΩP

e−
a(x2+y2+w2)

2 (1 + |∇w|2)1/2)dxdy,

where w : R2 ⊃ ΩP → R satisfies w = f0(x, y) on ∂ΩP (i.e., z = f0(x, y) is the fixed
boundary curve of the surface).

(g) Geodesics:

L[u1(t), u2(t)] =

∫ L

0

gij
dui

dt

duj

dt
dt,

where gij is the given metric tensor, and (u1, u2) : (0, L) → R
2 satisfies (u1, u2)|0 =

(u1A, u
2
A) and (u1, u2)|L = (u1B, u

2
B).

(h) Electrodynamics:

S[A, ϕ] = −

∫ t1

t0

∫

R3

[ǫ0

2
|E|2 −

1

2µ0

|B|2 − ρϕ+ J ·A
]

dxdt

= −

∫ t1

t0

∫

R3

[ǫ0

2
|∇ϕ+At|

2 −
1

2µ0

|∇ ×A|2 − ρϕ+ J ·A
]

dxdt,

where (A, ϕ) : R3 × (t0, t1) → (R3,R) are smooth, and (all derivatives) vanish as |x| →
+∞.
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