These problems will not be collected.

10.A Exercise 5 in the notes on perturbation theory by Prof. Liping Liu, posted on the class web page. However, you need find only the first two terms in the expansions.

10.B (a) Find the eigenvalues, and an orthonormal basis of eigenvectors, of the matrix $A = \begin{pmatrix} 0 & 2 \\ 2 & 3 \end{pmatrix}$.

(b) Find the eigenvalues and eigenvectors, to first order in ε , of the matrix $A + \varepsilon B$, where $B = \begin{pmatrix} 3 & 1 \\ 1 & -5 \end{pmatrix}$

10.C Find the eigenvalues and eigenvectors, to first order in ε , of the matrix $A_0 + \varepsilon A_1$, where $A_0 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ and $A_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \\ 3 & 2 & 5 \end{pmatrix}$.

10.D Let D be the set of functions f(x) which are defined and have two derivatives on [0, L]and satisfy f'(0) = f'(L) = 0, and let H_{ε} be the operator which acts on these functions by $H_{\varepsilon}f = -((1 + \varepsilon x)f')'$.

(a) Show that H_{ε} is symmetric, that is, that $\langle f, H_{\varepsilon}g \rangle = \langle H_{\varepsilon}f, g \rangle$ for functions f and g in D. Here $\langle f, g \rangle = \int_0^L f(x)g(x) dx$. Hint: show that $\langle f, Hg \rangle = \int_0^L (1 + \varepsilon x)f'(x)g'(x) dx$; this formula may be also useful for computations in (b).

(b) Find all eigenvalues of H_{ε} to first order in ε . Hint: the eigenvalue problem for H_0 is associated with a "half-range cosine series".

(c) For the smallest eigenvalue of H, find the corresponding eigenvector to first order in ε .