Turn in starred problems Tuesday 4/4/2017.
8. A* Exercise 2(a) from the posted notes (by Professor Liu) on the calculus of variations. Take E, I, and q as constants.
8.B* An elastic membrane is stretched over a wire loop; the parametric equations in cylindrical coordinates of the loop are $r=r(\theta)=R, z=z(\theta)=A \sin 2 \theta$, with θ the polar angle. The membrane surface is described by a function $z=w(x, y), x^{2}+y^{2} \leq R^{2}$, with the boundary condition (from the loop) $w(R \cos \theta, R \sin \theta)=A \sin 2 \theta$. w will minimize the energy

$$
E(w)=\int_{x^{2}+y^{2} \leq R^{2}}\left[\left(\frac{\partial w}{\partial x}\right)^{2}+\left(\frac{\partial w}{\partial y}\right)^{2}\right] d x d y
$$

(a) Use the calculus of variations to obtain the partial differential equation satisfied by w.
(b) Use the chain rule to express $\partial w / \partial x$ and $\partial w / \partial y$ in terms of $\partial w / \partial r$ and $\partial w / \partial \theta$, and thus express $E(w)$ as an integral in polar coordinates involving the r and θ derivatives of w (remember that $d x d y=r d r d \theta$). Find directly from this the differential equation for $w(r, \theta)$ in polar coordinates. (Note: this is one way to obtain the form of the Laplacian in polar coordinates. See (18) on page 785 of Greenberg.)
(c) Find the solution $w(r, \theta)$. Hint: separation of variables. w should be bounded.
8.C Consider the situation of problem 8.B, but suppose now that $w(x, y)$ is to minimize the area $A(w)$ of the membrane, where

$$
A(w)=\int_{x^{2}+y^{2} \leq R^{2}} \sqrt{1+\left(\frac{\partial w}{\partial x}\right)^{2}+\left(\frac{\partial w}{\partial y}\right)^{2}} d x d y
$$

Find the partial differential equation, in Cartesian coordinates, which w will satisfy.
8.D* Consider vibrations of a rectangular membrane which covers the region Ω in which $0 \leq x \leq a$, $0 \leq y \leq b$; let $w(t, x, y)$ denote the (vertical) displacement of the membrane at the point (x, y) and time t. The kinetic and potential energies of the membrane are respectively

$$
T=\frac{\rho}{2} \int_{\Omega}\left(\frac{\partial w}{\partial t}\right)^{2} d x d y \quad \text { and } \quad V=\frac{\tau}{2} \int_{\Omega}\left[\left(\frac{\partial w}{\partial x}\right)^{2}+\left(\frac{\partial w}{\partial y}\right)^{2}\right] d x d y
$$

with ρ the density of the membrane and τ the surface tension. The motion of the membrane between times t_{1} and t_{2}, with fixed initial and final configurations $w\left(t_{1}, x, y\right)=u(x, y)$ and $w\left(t_{2}, x, y\right)=$ $v(x, y)$, will be one for which the action $\int_{t_{1}}^{t_{2}} L(t) d t$, where $L=T-V$, is stationary (that is, at which the first variation of the action is zero).
(a) Suppose that w satisfies homogeneous Dirichlet boundary conditions: for $t_{1} \leq t \leq t_{2}$,

$$
w(t, 0, y)=w(t, a, y)=0, \quad 0 \leq y \leq b, \quad w(t, x, 0)=w(t, x, b)=0, \quad 0 \leq x \leq a
$$

Use the calculus of variations to obtain the partial differential equation satisfied by w.
(b) Suppose now that the edge of the membrane on which $y=0$ is free to move transversely to the $x-y$ plane. Show that w satisfies the PDE of (a) but with a homogeneous Neumann boundary condition $\partial w / \partial y=0$ on this edge.
8. \mathbf{E}^{*} A string, whose rest position is the portion $0 \leq x \leq L$ of the x axis, vibrates in the $x-y$ plane with amplitude $y=w(x, t)$. The left end of the string is fixed at its rest position (so that $w(0, t)=0$) while the right end is free to move transversally to the x axis but is subject with a linear restoring force $-k w(L, t)$, corresponding to a potential energy $V_{0}(t)=k w(L, t)^{2} / 2$ which must be added to the usual potential energy of the string. Find the total kinetic and potential energies of the system and the action $\int_{t_{1}}^{t_{2}}(T(t)-V(t)) d t$, and thus show that $w(x, t)$ satisfies the wave equation with a Robin boundary condition at the right end.

