Turn in starred problems Tuesday $3 / 7 / 2017$.

1. Consider the problem of finding extrema of $I(y)=\int_{0}^{1}\left(1+y^{\prime}(x)^{2}\right) d x$, subject to the conditions $y(0)=y_{1}, y(1)=y_{2}$.
(a) Determine the Euler-Lagrange equation for the problem and show that it has a unique solution $y_{0}(x)$ satisfying the endpoint conditions.
(b) By computing $I\left(y_{0}+\eta\right)$, where $\eta(x)$ is a differentiable function with $\eta(0)=\eta(1)=0$, show that $I\left(y_{0}\right)$ is an absolute minimum of $I(y)$.
2. Find the Euler-Lagrange equation for extremals of $I(y)=\int_{x_{1}}^{x_{2}} f\left(x, y(x), y^{\prime}(x)\right) d x$ in each case below. Simplify to the extent practical. The equation in (b) should be familiar.
(a) $f\left(x, y, y^{\prime}\right)=x y^{\prime 2}-y y^{\prime}+y$;
(b) $f\left(x, y, y^{\prime}\right)=p(x) y^{\prime 2}-q(x) y^{2}-\lambda w(x) y^{2}$.
3^{*}. Consider the problem of finding extrema of

$$
I(y)=\int_{0}^{a}\left(y^{\prime}(x)^{2}-y(x)^{2}\right) d x, \quad a>0,
$$

subject to the conditions $y(0)=y_{1}, y(a)=y_{2}$. Determine the Euler-Lagrange equation for the problem and show that if a is not of the form $n \pi$ for some integer n then there is a unique solution satisfying the end-point conditions. Show further that if $a=n \pi$ then either there is no solution or there are many solutions, and identfy the conditions under which each possibilitiy occurs.
4. In this problem we find the shortest path (geodesic) between two points on the sphere. We use the notation of Greenberg, Section 14.6.3 for spherical coordinates θ and ϕ. (This problem is discussed in Section 3-5(c) of Weinstock.)
(a) Show that if a path on the surface of a sphere of radius R is described by a function $\theta(\phi)$, defined for $\phi_{1} \leq \phi \leq \phi_{2}$ and satisfying $\theta\left(\phi_{1}\right)=\theta_{1}, \theta\left(\phi_{2}\right)=\theta_{2}$, then the path length is

$$
I(\theta)=\int_{\text {path }} \sqrt{d x^{2}+d y^{2}+d z^{2}}=R \int_{\theta_{1}}^{\theta_{2}} \sqrt{\sin ^{2} \phi \theta^{\prime}(\phi)^{2}+1} d \phi
$$

(b) Determine the Euler-Lagrange equation satisfied by a minimizing path $\theta(\phi)$ and, from the fact that the integrand $f\left(\phi, \theta^{\prime}\right)$ is independent of θ, show that $\theta(\phi)$ satisfies the first order equation

$$
\frac{d \theta}{d \phi}= \pm \frac{\csc ^{2} \phi}{\sqrt{C^{2}-\csc ^{2} \phi}}
$$

for some constant C. Integrate this equation (a preliminary substitution $u=\cot \phi$ is helpful) and show that the resulting solutions lies on a plane through the origin: for some a, b, c

$$
a x+b y+c z=a R \sin \phi \cos \theta+b R \sin \phi \sin \theta+c R \cos \phi=0,
$$

on the curve, and hence the curve is a portion of a great circle.
5^{*}. (Weinstock, page 46, 7 (a)). Derive the differential equation satisfied by the four-times differentiable function $y(x)$ which extremizes the integral

$$
I(y)=\int_{x_{1}}^{x_{2}} f\left(x, y, y^{\prime}, y^{\prime \prime}\right) d x
$$

under the condition that both y and y^{\prime} are prescribed at x_{1} and x_{2}.

