Turn in starred problems Tuesday $2 / 7 / 2017$.
Section 22.2: 1^{*} (but see instruction 1 below).
Section 22.3: 10 (a), (e), (g)*, 11 (a), (b)*, 14(a), (d)*, (e)
4.A In each case below, find a conformal mapping $w=f(z)$ carrying the given region D onto the upper half plane $v>0$ (here $w=u+i v$ and in describing D we always write $z=x+i y)$. Give a brief explanation of your answer, but not a full proof.
(a) D is the right half plane $x>0$.
(b) D is the second quadrant $x<0, y>0$. Hint: think about z^{2}.
(c)* D is the intersection of the right half plane with the unit disk: $x>0, x^{2}+y^{2}<1$. Hint: start with a bilinear transfomation, then use the idea of (b).
(d) ${ }^{*} D$ is the strip $1<x<2$.
(e) D is the half strip $0<x<1, y>0$. Hint: modify an earlier homework problem.
4.B* (From Exam 1 2011). Suppose that the function $\psi(x, y)$ is defined for $x>0$ by $\psi(x, y)=\tan ^{-1}(y / x)$, where the value chosen for the inverse tangent is such that $-\pi / 2<$ $\psi(x, y)<\pi / 2$.
(a) Show by direct computation that $\psi(x, y)$ is harmonic.
(b) The conclusion in (a) also follows from a general fact about the relation between harmonic and analytic functions. State this fact and explain carefully how it implies that $\psi(x, y)$ is harmonic.
(c) Find a harmonic conjugate $\phi(x, y)$ of $\psi(x, y)$.

Instructions, comments and hints:

1. Problem 22.2.1(b) The problem is not well stated; separation of variables is a method of finding a solution, but of course you don't need it to show that the given $\Psi(u, v)$ is a solution. So proceed as follows:
(b.i) Check that the given Ψ is a solution.
(b.ii) Let $\Phi(u, v)=10+40 u$. We know from (b.i) that Φ solves the given problem (since it is obtained from the Ψ given there by setting $A=B=0)$. Show that if $\Psi(u, v)$ is any solution of the original problem (not necessarily the one given in (1.1)) then $\Xi(u, v)=$ $\Psi(u, v)-\Phi(u, v)$ satisfies Laplace's equation with zero boundary conditions in the strip.
(b.iii) Use separation of variables to find the general solution of $\Xi(u, v)$ of Laplace's euation with zero boundary conditions (the general solution which can be obtained in this way). Show that combining this with (b.ii) gives a solution $\Psi(u, v)$ of the original problem which generalizes the given one.
