Turn in starred problems Tuesday 1/31/2017.
Greenberg, Section 21.5: $5(\mathrm{a}),(\mathrm{b})^{*}, 10(\mathrm{a}),(\mathrm{e})^{*}, 12^{*}, 14(\mathrm{a})^{*}, 15(\mathrm{~b})^{*},(\mathrm{c}),(\mathrm{d})^{*}$. See instruction 1 below for $5(b)$ and $10(e)$.

Instructions, comments and hints:

1. Do problems 5 (b) and 10 (e) together. In fact, show that if you calculate the derivative of $1 / z$ (i) by the rule for powers (or equivalently the quotient rule), (ii) directly as a limit, from (8), as in Example 2, or (iii) by any of the formulas (19), the answer is the same.
2. Hint for 14(a): use the Cauchy-Riemann equations and the following

Fact: If the real valued function $u(x, y)$ is defined and has partial deriviatives u_{x} and u_{y} which satisfy $u_{x}=u_{y}=0$ throughout a connected open set D, then u is constant in D.
3. For 15 (d), work in polar coordinates. In these coordinates you can use equation (1) of section 20.3 to determine if a given function is harmonic, and the appropriate CauchyRiemann equations (equations (30) of Section 21.5) to construct the conjugate harmonic function of a given harmonic function.

