Assignment 4

Turn in starred problems Wednesday, February 15, at the beginning of the period. Special instructions: Please write out problems 2.4.7 and 4.B separately from the remaining problems, 2.3.13, 2.4.6, 2.5.5, and 4.A. Do not staple the two different sets of problems together; If you need more than one page for either set, staple them separately.

Exercises from Abbott, Understanding Analysis:
Section 2.3: 13*
Section 2.4: 3, 6*, 7^{*}
Section 2.5: 1, 2, $5^{*}, 9$
4.A* Define the sequence $\left(c_{n}\right)$ by $c_{1}=2, c_{n+1}=2 /\left(7-c_{n}\right)$ for $n \geq 1$.
(a) Prove that $c_{n}^{2}-7 c_{n}+2<0$ for all n.
(b) Prove that $\left(c_{n}\right)$ converges, and find its limit.
4.B* Let $\left(a_{n}\right)$ be a bounded sequence of real numbers, and let A be the set of all real numbers which are limits of subsequences of $\left(a_{n}\right)$:

$$
A=\left\{a \in \mathbb{R} \mid a=\lim _{k \rightarrow \infty} a_{n_{k}} \text { for some subsequence }\left(a_{n_{k}}\right) \text { of }\left(a_{n}\right)\right\}
$$

Prove that $\sup A$ exists and that $\lim \sup a_{n}=\sup A$. (See Exercise 2.4.7 for the definition of $\lim \sup a_{n}$. It is also true that $\lim \inf a_{n}=\inf A$, but you need not prove this.)

