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Abstract

We consider the quantum dynamics of an electron in a periodic box of large size

L, for long time scales T , in d dimensions of space, d � 3. One obstacle occupying a

volume 1 is present in the box, and the coupling constant between the electron and the

obstacle is denoted by the small parameter �. The exact regime under consideration

includes the low-density situation T � L
d, but the coupling needs to be small, �! 0.

It is formally expected that the low-density-regime T � L
d should lead to a time-

irreversible Boltzmann equation along the asymptotic process. However, we prove that

the periodicity creates speci�c phase coherence e�ects which dominate the asymptotic

process. For this reason, we show that the limiting dynamics is not the expected

Boltzmann equation, and it remains time-reversible. Also, these e�ects enforce us to

consider a regime where the coupling with the obstacles is rescaled and small. Yet, the

convergence proved here only holds as a term-by-term convergence of certain series.

Our result relies on the analysis of certain Riemann sums with arithmetic con-

straints, and number theoretic considerations relating the asymptotic distribution of

integer vectors on spheres of large radius happen to play a key rôle in this paper.
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1 Introduction

In this paper we are interested in the quantum dynamics of an electron in a periodic
distribution of obstacles in d dimensions of space (d � 3). To be precise, the electron is
assumed to evolve on a torus (so that our analysis relies on Fourier series rather than on
Bloch waves). The size of the period is measured by the large scaling parameter L, and
each elementary cell contains one obstacle occupying a volume of the order O(1). Also
the coupling constant measuring the strength of the interaction between the electron and
the obstacle is denoted by �. We consider the asymptotic dynamics as L ! 1. In order
to obtain a non-trivial limiting dynamics, one has to rescale time as well, and to look
at the evolution of the electron on long time scales of the order T , with T ! 1, unless
the electron essentially performs a \free 
ight" in the limit L!1. The present paper is
essentially concerned with the regime T=L2 !1. Also, our analysis is naturally restricted
to the case of a small coupling � � L2=T ! 0. We refer to (2.6) and (2.7) for the precise
regime. For dimensions d � 3, the time scales under consideration here include the time
scales taken into account in the standard low-density scaling (or Boltzmann-Grad scaling),
where the ratio T � Ld is prescribed. In the latter scaling indeed, the obstacles occupy a
proportion � 1=Ld of the total volume, so that the probability for the electron to hit an
obstacle once per unit time on this time scale is unity.

The issue in considering such a model is the following: it is physically expected (see e.g.
[VH1], [VH2], [VH3], [KL1], [KL2], [Ku], [Pr], [Vk], [Zw] or also [Cal], see [Fi] for recent
developments) that the present system tends to be described by a Boltzmann equation
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in the low-density asymptotics, and precise convergence results in this direction have
been actually proved in various situations where the obstacles are, typically, randomly
distributed (see e.g. [Sp], [HLW], [La], [EY]). In particular, the initially time-reversible
model is expected to be asymptotically described by a time-irreversible equation. Contrary
to the random situation, the present paper deals at variance with a model which is both
deterministic and periodic, which is a very strong constraint as well as a non-generic case.
The deterministic and periodic situation has been previously studied in [Ca2] (see also
[CD]), but a small damping parameter � > 0 was introduced in this paper, which acts
as a regularizing parameter and models the interaction of the electron with external light
([NM], [SSL]): in [Ca2], the low-density asymptotics followed by the limit �! 0 gives the
desired convergence towards a Boltzmann equation. In this perspective, the present paper
studies the direct limit L!1, T !1 when neither a stochastic noise, nor any damping
term is introduced in the original model. We refer to Subsection 2.2 below for a more
detailed comparison between the present work and [Ca2], [Sp], [EY], ...

Roughly summarizing, we show in this paper that the present model is not described
by a Boltzmann equation in the limit, and the actual limiting dynamics is proved to be
time-reversible (Theorem 1). Note however that we only prove the convergence towards
the limiting dynamics in the sense of a term-by-term convergence of certain series. On
the other hand, the present non-convergence result turns out to be related to the presence
of phase coherence e�ects which are speci�c to the periodic case, and number theoretic
considerations happen to have great importance in describing the limiting dynamics. In
particular, Theorem 1 relies on the explicit computation of the limit of certain Riemann

sums with quadratic constraints of the type, lim
L!1

1

L2d�2
X

(n;p)2Z2d
�

�
n

L
;
p

L

�
1[n2 = p2] ;

where � is any smooth and decaying function (Theorem 2). This second result is of
independent interest and relies on a precise number theoretical analysis performed in
[CP]. Note that when the dimension d = 3, the above mentionned convergence relies
on a conjecture of number theoretical nature (see assumption (A)). Note also that the
emergence of number theoretical considerations in the context of the periodic Schr�odinger
equation is fairly natural and actually standard, see e.g. [Bo1], [Bo2].

From a physical point of view, the results previously proved in the stochastic framework
indicate that the asymptotic dynamics is indeed described by a Boltzmann equation for
almost all distribution of obstacles, whereas the present paper exhibits one particular
distribution of obstacles where the convergence towards a Boltzmann equation does not
hold true. Mathematically speaking, these qualitatively very di�erent behaviours come
from the fact that the speci�c phase coherence e�ects arising in the periodic context are
somehow smoothed out in the random case ([Sp], [HLW], [La], [EY]), as well as in the
case where a phenomenological damping parameter is introduced ([Ca2]), and we refer to
(2.12), (2.13) and (2.14) for a quantitative formulation of this point.

We wish to mention here that a similar contrast between the stochastic and the periodic
situations has already been pointed out in the context of classical mechanics, see [BBS] for
the convergence result in the random situation, and [BGW] for the non-convergence result
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in the periodic framework. Note also that the non-convergence result proved in [BGW]
relies on number theoretical considerations speci�c to the periodic context as well.

A review about the non-convergence result presented here and the convergence result
proved in [Ca2] can be found in [Ca4].

2 Presentation of the results

2.1 The mathematical model under consideration

Mathematically speaking, the situation presented in the introduction is described by the
following Von-Neumann equation on the torus (R=2�LZ)d,

i

T

@

@t
e�(t;x;y) = ��x e�+ �y e�+ �(V (x)� V (y))e� : (2.1)

In this equation the unknown is the so-called density-matrix of the electron, e�(t;x;y),
which is the mathematical object describing the state of the electron at time t 2 R (see
[CTDL]). It depends on a time variable t and two space variables x and y both belonging
to the torus of period L, (R=2�LZ)d. The interaction with the obstacle is taken into
account through the potential �V (x) 2 R, where V (x) is the potential created by the
obstacle in the elementary cell of size L, and � 2 R is a coupling constant which scales
the strength of the interaction. Throughout this paper the potential is assumed to be
�xed (independently of L), smooth, and compactly supported in the open elementary cell
]0; 2�L[d. Note that time scales of the order T are indeed considered in (2.1), due to the
prefactor 1=T in front of the time derivative @=@t.

Now the asymptotic process T !1 together with L!1 in (2.1) is performed in the
Fourier space rather than directly on (2.1). For this reason, we need to de�ne, for any n
and p 2Zd, the following Fourier transforms,

�(t; n; p) := (2.2)Z
[0;2�L]2d

e�(t;x;y) 1

(2�L)
d
2

exp

�
�in � x

L

�
1

(2�L)
d
2

exp

�
+i
p � y
L

�
dx dy ;

as well as the more standard,

bV (n) := Z
[0;2�L]d

V (x) exp(�in � x) dx
�
=
Z
Rd
V (x) exp(�in � x) dx

�
; (2.3)

for any n 2 Rd. The last equality comes from the assumption on the support of V andbV (�) is by assumption a �xed pro�le belonging to the Schwartz-class S(Rd). Here, bold
letters n, p, ... denote continuous variables belonging typically toRd, whereas plain letters
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n, p, ... denote discrete variables belonging typically to Zd, a convention used throughout
the paper. With these notations, the original Von-Neumann equation (2.1) becomes,

i

T

@

@t
�(t; n; p) =

n2 � p2
L2

�(t; n; p) (2.4)

+
�

Ld

X
k2Zd

nbV �n� k
L

�
�(t; k; p)� bV �k � p

L

�
�(t; n; k)

o
:

Note that the transformation (2.2) is the natural one since the functions  n(x):=(2�L)
�d=2

exp(�in � x=L), when n 2Zd, are the eigenfunctions of the operator ��x on the space of
periodic functions in the box [0; 2�L]d, with degenerate eigenvalues, En := n2=L2 (n 2
Z
d) : Note in particular that the limiting procedure L ! 1 performed in the present

paper makes the spectrum of the Laplacian ��x continuous.
Now, as it is standard in this �eld (see e.g. [Ku], [KL1], [KL2], [Cal], [Zw]) we are only

interested in performing the asymptotics L!1, T !1 in (2.8) for particular initial data
which are stationary states of the free Von-Neumann equation iT�1@ e�=@t = (��x+�y)e�.
In other words, we wish to quantify the large time in
uence of the potential for initial
states which are equilibrium states of the unperturbed hamiltonian ��x. The initial data
of interest in the present paper are thus taken of the form,

�(t; n; p)
���
t=0

=
1

Ld
�0
�
n

L

�
1[n = p] ; (2.5)

where �0(n) � 0 (n 2 Rd) is assumed to be some given pro�le belonging to the Schwartz-
class S(Rd), and 1[n = p] denotes the indicator function of the set fn = pg. It is easily seen
that the assumption (2.5) generalizes both the case of initial thermodynamical equilibrium
where �(t; n; p)jt=0 � L�d exp(��n2=L2) 1[n = p] and � is the inverse temperature, and
the more general case where �(t = 0) is an arbitrary function of the energy �(t; n; p)jt=0 �
L�df(n2=L2)1[n = p] for some \reasonable" function f .

There remains to quantify the exact regime under which L and T go to in�nity in the
present study. As mentionned before, one natural asymptotics in the present context is
dictated by the low-density-regime where T � Ld and the coupling constant � is of the
order O(1). In the general case where the potential V is not periodic but rather \random",
this regime is indeed the correct one which gives the desired convergence towards a Boltz-
mann equation. It turns out that the present periodic situation dictates a slightly di�erent
and in some sense more general scaling. Indeed, let us rename the scaling parameters �
and T , and de�ne the new scaling variables,

T = TL�2 ; � = �T : (2.6)

With this renaming, the low-density scaling reads T � Ld�2, � � T . Now, the asymptotics
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treated in this paper reads,

8>><>>:
T ! 1 ; L!1 ; � = O(1) ; with

T
L�(d) logL

!1 ;

and �(d) = 0 when d � 5 ;
�(d) > 0 may be arbitrarily small when d = 3; or d = 4 :

(2.7)

It describes a long time and small coupling regime, and (2.7) turns out to be the natural
scaling in the present periodic situation.

We now wish to give some important comments and justi�cations for the scaling
(2.7). Firstly, the condition T =(L�(d) logL) ! 1 includes the important low-density-
limit T � Ld�2 for dimensions d � 3 as a particular case, and the reader may safely
restrict his attention to the mere low-density regime throughout this paper. The very
condition T =(L�(d) logL) ! 1 stems from technical reasons, and the logarithmic factor
originates both from the periodicity and from the fact that

PL
j=1 1=j � logL as it will

be clear later. We refer, for instance, to Section 3 on this point. Secondly, the small
coupling condition � = O(1) is much more restrictive than the condition � � T imposed
in the \standard" low-density scaling. However, this condition turns out to be again the
natural one in the present periodic situation, see e.g. Theorem 1. Hence one readily ob-
serves on (2.7) two speci�cities of the periodic situation in comparison with the case of a
\random" potential: �rstly, the time scale for which a satisfactory limiting dynamics is
obtained can be either smaller or arbitrarily larger than the usual low-density time-scale
(cases T � L" for some small " > 0, and T � LN for some large N respectively), and the
limiting dynamics turns out to be the same in any case as we shall see (Theorem 1). This
readily contrasts with the \random" situation where fairly di�erent limiting dynamics are
expected depending on the time-scales under consideration. This is also reminiscent of
the work [GN] concerning periodic Schr�odinger operators. Secondly, the periodic situation
imposes to rescale the strength of the potential with the time-scale as � � 1, in contrast
with the low-density scaling where the correct values are � � T when T � Ld�2. The
rough mathematical reason for this second phenomenon is the following. On the time
scale given in (2.7), and in particular on the low-density time-scale, the Von-Neumann
equation reads i@t� = T [n2 � p2]�+ � � � . For this reason, the resonances occuring when
n2 = p2 are emphasized as soon as T ! 1 (e.g. due to the Riemann-Lebesgue Lemma,
see Lemma 1 below). It turns out that the contribution of these resonances in the sum
(1=Ld�2)

P
k2Zd : : : in (2.8) below is O(1). This explains the need for a rescaling. In the

random situation, we rather have i@t�(t;n;p) = T [n2�p2]�+ � � � where n and p are now
continuous variables (roughly speaking), and much more subtle oscillation phenomena
dominate (e.g. the non-stationnary phase Lemma), hence the fairly di�erent behaviour in
this case.

As a conclusion of this presentation, we may summarize from (2.6) and (2.4) that the
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present paper treats the asymptotics (2.7) on the equation,

@

@t
�(t; n; p) = �iT [n2 � p2]�(t; n; p) (2.8)

�i �

Ld�2
X
k2Zd

nbV �n� k

L

�
�(t; k; p)� bV �k � p

L

�
�(t; n; k)

o
;

for initial data of the form (2.5). Note that we do not explicit the dependence of the solu-
tion � to (2.8) upon the parameters T , L and � for notational convenience, a convention
kept throughout this paper. We thus write � instead of �T ;L;� and allow ourselves to write
limT !1 � and so on.

2.2 Comparison with other works: \badly sampled" oscillatory sums

As mentionned above, it is physically expected that, in the low-density-limit T � Ld�2,
the Von-Neumann equation (2.8) converges towards a Boltzmann equation, called the
Quantum Boltzmann equation. To be more speci�c, one may introduce the distribution
f(t;n) :=

P
n2Zd �(t; n; n) �(n� n

L) as a distribution on Rd. With this notation, the dis-
tribution f(t;n) is expected to converge in the low-density regime towards some f1(t;n)
satisfying the so-called Quantum Boltzmann equation,

@tf
1(t;n) = 2�

Z
Rd
�(n2 � k2) �(n;k) [f1(t;k)� f1(t;n)] dk ; (2.9)

for some symmetric function �(n;k) representing the transition rate between the impulse
n and the impulse k. Here, � is given by a series in � (the so-called Born-series), whose
�rst term is,

�(n;k) = �2j bV (n� k)j2 + O(�3) ; (2.10)

and this last equation is called the Fermi Golden Rule (See [RS]). From a mathematical
point of view, results of this type have actually been proved true in [Sp], [HLW], [La],
[EY], when the potential �V is chosen to be stochastic, i.e. �V � �V (x; !), ! belonging
to some probability space, and the convergence holds in expectation with respect to ! (to
be more precise, the weak coupling limit leads to (2.9) with a cross-section given by the
�rst term of the expansion (2.10), whereas the low-density regime leads to (2.9) with the
full Born-series expansion (2.10)). In the deterministic situation where the potential is
given at once, we �rst wish to quote the work of F. Nier [Ni1], [Ni2] for the derivation of
the scattering rate � mentionned above, as well as [Ca1] for a non-convergence result when
the period L is �xed of the order O(1). Finally, we wish to mention that the equation
(2.8) modi�ed by a damping parameter � > 0 is considered in [Ca2] (see also [CD]),

i

T

@

@t
�(t; n; p) =

n2 � p2
L2

�(t; n; p)� i��(t; n; p)1[n 6= p] (2.11)

+
�

Ld

X
k2Zd

nbV �n� k
L

�
�(t; k; p)� bV �k � p

L

�
�(t; n; k)

o
;
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(compare with (2.4)) and the initial datum is assumed of the form (2.5) as well. In [Ca2],
the low-density limit is performed �rst and the asymptotics �! 0 is taken in a second step:
the resulting limiting dynamics is then proved to be (2.9) with the correct cross-section
�, see [Ca2] and [Ca3]. Note that the damping term in (2.11), which is intended to model
at a phenomenological level the coupling of the electron with external light ([NM], [SSL]),
readily makes the modi�ed Von-Neumann equation (2.11) time-irreversible, contrary to
(2.4) or equivalently (2.8).

Contrary to these two approaches, where some \noise" is introduced in the true
Schr�odinger equation, the present paper states at variance that the direct limit T ! 1
and L!1 in (2.4) (or equivalently T ! 1, L!1 in (2.8)) does not provide the desired
convergence towards an irreversible dynamics in the regime (2.7), a regime which includes
the low-density regime T � Ld�2. We wish to mention yet that this non-convergence
result is somehow natural in the present periodic and linear setting.

From a purely mathematical point of view, we now wish to illustrate the reason for the
qualitatively very di�erent results obtained here on the one hand, and in [Ca2], or [Sp],
[HLW], [La], [EY] on the other hand. After some easy manipulations, it is seen that the
analysis of both (2.11) and (2.4) leads to considering sums of the form,

F (L; �) :=
1

L2d

X
(n;p)2Z2d

Z Ldt

0
exp

 
i
n2 � p2
L2

s� �s

!
ds �

�
n

L
;
p

L

�
; (2.12)

for some smooth test function �. In this language, the analysis performed in [Ca2] leads to
the limit lim�!0 limL!1 : : : whereas the present work deals with limL!1 lim�!0 : : : (and
the �rst limit � ! 0 is trivial in the latter case). It is clear on (2.12) that a competition
occurs between the discreteness of the sum

P
n;p which should approximate an integral

over R2d, and the convergence of the oscillatory term

Z Ldt

0
exp(i(n2� p2)s=L2)ds towards

the oscillatory integral
Z +1

0
exp(i[n2 � p2]s) ds, an object which only has a meaning as

a distribution in the continuous variables n and p in Rd. In particular, the convergence
of Riemann sums towards their integral counterpart is not guaranteed when dealing with
distributions, and in this case the sampling may destroy the convergence towards the
desired oscillatory integral. The result in [Ca2] relies on the following limit,

lim
�!0

lim
L!1

F (L; �) =

Z
R2d

Z +1

0
exp(i[n2 � p2]s)�(n;p) ds dn dp ; (2.13)

as formally expected. However, the key of the present paper lies in proving (Theorem 2)
the existence of an explicitely computable measure d� supported on the set n2 = p2, such
that,

lim
L!1

lim
�!0

1

Ld�2
F (L; �) =

Z
R2d

�(n;p) d�(n;p) : (2.14)
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This result (2.14) proves that the sampling of size 1=L in n and p in (2.12) is somehow too
crude to converge towards the natural limit (2.13). Both limits (2.13) and (2.14) answer
a question posed in a physical context in [Co]. The fact that the limits (2.13) and (2.14)
di�er is the very reason for the diverging results established in [Ca2] on the one hand, and
here on the other hand. In the stochastic case, the phase n2 � p2 appearing in (2.12) is
somehow randomized, so that again a result of the kind (2.13) may be used.

Technically speaking, we wish to add that the exact value of the measure d� depends
on the asymptotic behaviour of the cardinality of the set fn 2 Zd s.t. n2 = Ag when
A ! 1 (A 2 N), as well as on the asymptotic repartition of the unitary vectors n=jnj
when n2 = A and A ! 1. The latter asymptotics is studied independently in [CP], and
it turns out that the analysis encounters deep di�culties in dimensions d = 3 and 4, while
it remains much easier in dimensions d � 5.

2.3 Statement of the main Theorems

We now quote the statement of the main results of the present paper. In order to do so,
we need to formulate an important assumption,

(A) There exists a �0(d) 2]0; 1] such that for any 0 < � < �0(d), for any
l � 1, l 2 N, the following limit exists,


l;d := lim
A!1

1

1 +A1��
A+A1��X
B=A

 
#fn 2Zd s.t. n2 = Bg

B
d
2�1

!l

:

In a less essential way, we may further assume the following bound,

(A') There exists a constant C(d), depending on d, so that,


l;d � C(d)l :

The assumptions (A) and (A') are easily proved true for dimensions d � 5, and �0(d) = 1
in this case, see Lemma 4. In dimension d = 4, we are able to prove that the quantity
involved in (A) is bounded independently of A for any � < �0(4) = 1, hence the existence
of a limit up to extracting a subsequence in A, see Lemma 5. However, the bound on 
l;4
which we are able to prove is of the form (Cl)l in this case. In dimension d = 3, we are
not able to prove (A), which is thus a conjecture in this case (except in the special case
l = 1 where the estimate is easy). Needless to say, the bound (A') is also out of reach
when d = 3. However, we have tested that the sequence in A involved in (A) converges
numerically in a satisfactory way for various values of l when d = 3. Also, when d = 3 or
d = 4, it seems numericaly plausible that the behaviour stated in (A') is realised. Note
that the independence of 
l;d upon � is natural since once the limit exists for some � > 0,
it also exists for any �0 < �, and the limit is the same.

Our main statement is now the following,
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Theorem 1 Let �(t; n; p) be the solution to (2.8) with initial datum given by (2.5). As-
sume that both bV (n) and �0(n) are smooth pro�les in S(Rd) with d � 3. De�ne the
distribution,

�I(t;n;p) :=
X

(n;p)2Z2d
exp(iT t[n2 � p2])�(t; n; p)�(n� n

L
)�(p� p

L
) : (2.15)

Take a smooth test function �(n;p) 2 C1
c (R2d) and consider the duality product,

h�I(t);�i :=
Z
R2d

�I(t;n;p)�(n;p) dn dp : (2.16)

Then,

(i) the sequence h�I(t);�i admits the power expansion,

h�I(t);�i =
X
l 2 N

l0 2 N

(�i�)l(+i�)l0Ql;l0(t) =
X
s2N

(i�)s
X

l+l0=s

(�1)lQl;l0(t) ;
(2.17)

where the last sum
P

l+l0=s � � � is �nite for any s � 0, and the terms Ql;l0(t) depend upon
T and L, but they are independent of �. Their explicit value is given in (4.7) below. The
above series converges for any � 2 R, given any �xed value of T and L.

(ii) If we further assume (A), the power series in (2.17) converges term-by-term towards
the following limiting power series,

h�I(t);�i ! h�1I (t);�i :=
X
l 2 N

l0 2 N

(�i�)l(+i�)l0Q1
l;l0(t) ; (2.18)

as L and T go to in�nity in the regime (2.7). The value of the quantity Q1
l;l0(t) is given

below in (5.1). The series in (2.18) converges for any � 2 R under assumption (A').

(iii) Formulae (5.1) and (2.18) de�ne, for any value of time t, a distribution (actually: a
measure) �1I (t;n;p), which can be seen as the weak-limit of �I(t;n;p). This distribution
is invariant under the transformation,

t 7! �t ; i 7! �i : (2.19)

In particular, the dependence of �1I (t) upon time t is reversible.

Remark 1 Note that the above Theorem has several restrictions. (a) Firstly, it is re-
stricted to the assumptions (A) respectively (A'), which is a restriction only for the
dimension d = 3, respectively d = 3 and 4. (b) Secondly, the convergence of the dis-
tribution �I which we are able to prove here only holds as a term by term convergence
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of the power expansion (2.17). Though the limiting power series turns out to de�ne an
analytic function of � as well (at least under assumption (A')), we are not able to prove
satisfactory uniform estimates with respect to L and T (see however (5.15) below). (c)
The last restriction lies in the fact that our result only holds when the electron evolves in
a dilated cube whose lengths in the di�erent directions of space are rationaly dependent,
a highly non-generic situation. Indeed, the generic case of a cube with rationaly indepen-
dent lengths cannot be treated by the present analysis, due to the appearance of small
denominator problems in this case, see Remark 6 below. 2

Remark 2 As one sees on the formulation of Theorem 1, the method of proof proposed
in the present paper is based on the explicit computation of the solution � to (2.8) as
a series expansion (2.17), and we pass to the limit on the explicit formulae. This is a
standard procedure in the context of the convergence towards \Boltzmann-like" equations,
see [CIP], [BGC], [Sp], [EY]. In our particular case, it turns out that the limiting dynamics
still is given by a series expansion stating the value of �1, and no simple equation relates
the value of �1. This could be compared with a similar fact in the classical context,
see [BGW], where the authors simply prove the non-convergence towards the natural
Boltzmann equation but the actual limiting dynamics is not expressed. We do believe
that a deep di�culty prevents one to pass to the limit \directly" in the particular equation
(2.8) instead of its power series solution as we do here. In particular, it seems plausible
that there is no constant e
d such that 
l;d = e
ld, and this makes the limiting dynamics
for �1 itself already di�cult to translate into a simple equation (See (2.18) and (5.1)).
Another motivation for such a credo lies in the fact that the \Riemann sums with quadratic
constraints", as they naturally arise in the proof of Theorem 1 by explicit computation,
cannot be treated without number theoretical arguments, and in particular the correct
rescaling of these sums (see (2.20)) is dictated by the number theoretical asymptotics
(2.24), an information which seems di�cult to exploit when arguing \directly" on the
equation (2.8). 2

Remark 3 The distribution �I(t;n;p) is called the density matrix in the interaction
picture. We wish to mention that a Theorem similar to Theorem 1 holds for the diagonal
part of the density matrix, namely f(t;n) :=

P
n2Zd �(t; n; n)�(n� n

L) : 2

The above Theorem, and in particular the need for (A) to hold true, turn out to be a
consequence of the following,

Theorem 2 Let �(k0;k1; : : : ;kN) be a smooth test function in S(R(N+1)d), with a di-
mension d � 3. Assume (A) holds true. Consider �nally the following \Riemann sum
with quadratic constraint",

IL(�) :=
1

Ld+N(d�2)
X

(k0;::: ;kN )2Z(N+1)d

�

�
k0
L
; : : : ;

kN
L

�
1[k20 = � � �= k2N ]: (2.20)

11



Then, as L!1, IL(�) converges, and its explicit limit is,

lim
L!1

IL(�) = 2
N+1;d

Z +1

�=0

Z
(Sd�1)N+1

�(N+1)(d�2)+1 (2.21)

�(�k0; �k1; : : : ; �kN) d� d�(k0) : : :d�(kN) :

Here, d� denotes the Euclidean measure of the sphere Sd�1, normalized with d�(Sd�1) = 1.

Remark 4 As we shall see, Theorem 2 is a consequence of the following Theorem, proved
in [CP] (See [Lab] for previous results): for any domain 
 � S

d�1, measurable with
respect to the euclidian surface measure d�, and for any dimension d � 5, the following
asymptotics holds,

#fn 2Zd such that n2 = A and n=jnj 2 
g
#fn 2Zd such that n2 = Ag �A!1 d�(
): (2.22)

In fact, formula (2.22) still holds true in average for the dimensions d = 4 and d = 3 as
well, in the sense that,

1

1 + h

A+hX
B=A

#fn 2Zd such that n2 = B and n=jnj 2 
g
#fn 2Zd such that n2 = Bg �A!1 d�(
); (2.23)

up to choosing h = A" for any small " > 0 when d = 4, and h = A1=4+" when d = 3. 2

Remark 5 Before turning to the proofs of all these results, we wish to justify now the
exact scaling needed in (2.20), and recall some important facts from number theory. These
will be of constant use below.

Without the constraint k20 = � � � = k2N , the correct normalization of the Riemann sum
is given by the prefactor 1=L(N+1)d instead of 1=Ld+N(d�2). The quadratic constraint
modi�es the prefactor because the number of (N + 1)-tuples of modulus � L satisfying
the constraint is of the order Ld+N(d�2) rather than L(N+1)d. This point is easily seen
since, roughly speaking, the cardinality #fn 2 Zd such that n2 = Ag is of the order

A
d
2�1. We make this point more precise below.
It is well known (see [Gr], [Va]) that,

#fn 2Zd such that n2 = Ag �A!1
�(3=2)d

�(d=2)
S(A) A

d
2
�1 ; (2.24)

(when d � 3), and S(A) is the so-called singular series, de�ned as,

S(A) :=
X
q�1

qX
a = 1

gcd(a; q) = 1

�
S(q; a)

q

�d
exp

�
�2i� aA

q

�
; (2.25)
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where we use the notation,

S(q; a) :=
qX

m=1

exp

 
2i�

am2

q

!
: (2.26)

By a standard estimate on Gauss' sums (see [Gr]), we have jS(q; a)j � Cq1=2, for some
constant C � 0, so that the series over q in (2.25) de�ning S(A) has a general term which

is upper-bounded by 1=q
d
2�1, and the series absolutely converges in dimensions d � 5.

The convergence of this series in much more delicate in dimension d = 4 and even more
delicate when d = 3, which explains the separate treatement of these two dimensions in
this paper.

NowS(A) is roughly speaking a quantity of the order 1, a statement that assumption
(A) translates in a more quantitative way. In particular, we wish to mention that, as is
well-known ([Gr]), in dimensions d � 5, there are positive constants c0(d) and c1(d) such
that for any A 2 N,

0 < c0(d) �S(A) � c1(d) <1 : (2.27)

In dimensions d = 4 and d = 3, this estimate becomes wrong as such, and one can only
prove (see [Gr]),

0 �S(A) � c2("; d)A
" ; (2.28)

for some constant c2("; d) depending on " > 0 and d = 3 or 4 (This estimate is not optimal
yet, see [Gr] for re�ned estimates). Hence S(A) can be arbitrarily small (it may vanish)
or as large as A" in dimensions 3 and 4. We refer to [Gr] and [Va] for these results.

Summarizing, we end this remark by stating the following bound,

#fn 2Zd such that n2 = Ag � C("; d)A
d
2�1+" ; (2.29)

for some constant C("; d) depending on " > 0 and d � 3, and one can choose " = 0 when
d � 5. This is an obvious consequence of the above estimates. We shall make repeated
use of this estimate below. 2

2.4 Organisation of the paper, notations

The paper is organised as follows:
1- In Section 3, we present a simple computation which is a model for all the compu-

tations appearing in the present paper. We explain on this computation the main features
of our analysis, and the proof of Theorem 1 simply uses in a general setting the ideas of
Section 3.

2- In Section 4, we explicitely compute the solution �(t; n; p) to (2.8), for any �nite
value of the scaling parameters L and T .
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3- The explicit formula obtained in Section 4 involves a factor called Hl (see (4.1))
which is some integral over the variables t1, � � � , tl of an oscillatory function of the form
exp(iT [!1t1 + � � �+ !ltl]), and the !i's are integers. By the Riemann-Lebesgue Lemma,
it is clear that this kind of factor goes to zero at least like 1=T when one of the !i's is
non-zero. It is a key argument in the present paper that we can prove a much more re�ned
estimate stating (very roughly) that Hl goes like 1=T r when r terms amongst the !i's are
nonzero (see (5.9) for the exact estimate), so that we can relate the size of Hl and the
number of non-zero !i's. The corresponding precise analysis is performed in Subsection
5.2.

4- Armed with the bounds of Subsection 5.2, we prove in Subsection 5.3.2 that the
\non-resonant" terms in the explicit formula for �(t; n; p) (corresponding roughly to the
case n2 6= p2 in (2.8)) go to zero like (L" logL)=T in the regime (2.7), for any " > 0. This
is based upon a very careful analysis of the \number of non-zero !i's" in factors involving
the function Hl, and the key di�culty lies in keeping precise track of the homogeneity of
our formulae in the scaling parameters L and T . Then we compute in Subsection 5.3.3
the limit of the remaining \resonant" terms (corresponding roughly to the case n2 = p2 in
(2.8)), by making use of the convergence of sums of the form (2.20). This ends the proof
of Theorem 1.

5- In Section 6, we prove Theorem 2 upon the basis of the results (2.22) and (2.23)
proved in [CP]. This uses assumption (A).

6- In Section 7, we prove the assumptions (A) and (A') in the cases d � 5, as well as
a weaker form of (A) and (A') when d = 4.

Notations
The following notational conventions are used.

(i) In the sequel, C(a; b; : : :) denotes any positive constant depending upon the pa-
rameters a, b, : : : . In most cases, the important point for us is to check that C does
not depend upon the scaling parameters L and T . However, these various constants may
depend upon the dimension d, the pro�les �0 and bV without explicitely emphasizing the
dependence upon these three parameters.

(ii) In the sequel, the lettersm, n, p, k, k1, k2, : : : , j, j1, j2, : : : , always denote integers
inZd, and they are possibly indexed by integers in N. The symbol

P
n;p;j;::: always denotes

the sum extended to all integers n, p, k, j, etc... in Zd.
(iii) For any integer m, the symbol [[1; m]] denotes the set [1; m]\Z.
(iv) An inequality of the form � � � � C(")A1�" always means that for any small enough

" > 0, there exists a constant C(") such that the inequality is satis�ed. In particular, we
may sometimes replace x2" by x" in a chain of inequalities without further comment.

(v) For any n 2 Rd, we use the notations,

hni := (1 + n2)1=2 ; and n2 := n21 + � � �+ n2d : (2.30)

(vi) Throughout the paper, d� denotes the Euclidean surface measure over the sphere
S
d�1, normalized by d�(Sd�1) = 1.
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(vii) We shall make repeated use of the following easy relations: for any smooth and
su�ciently decaying function � de�ned over RN, and for any L � 1, we have,������ 1LN

X
k2ZN

�

�
k

L

������� � C(�) ;
1

LN

X
k2ZN

�

�
k

L

�
!L!1

Z
RN

�(k)dk : (2.31)

3 A model computation

Before turning to the asymptotic analysis of (2.8) in the regime (2.7), we �rst present a
model computation containing the main features of the present analysis.

As it will be clear below, the study of (2.8) typically requires to characterize the
asymptotic behaviour of the model term,

SL;T (�) :=
1

Ld+(d�2)
X

(n;p)2Z2d
�

�
n

L
;
p

L

� Z t

s=0
exp(iT [n2 � p2]s) ds ; (3.1)

for some smooth and compactly supported test function �(n;p), say (see also (2.12), (2.13)
and (2.14)). The important point to notice is that this sum, though formally similar to
a Riemann sum, is not normalized like a usual Riemann sum. However, we prove below
that this term converges as T and L go to in�nity in the regime (2.7). The idea is that the
normalization by L�(2d�2) is correct over the resonant set n2 = p2 in view of Theorem 2.
Outside the resonant set, i.e. when n2 6= p2, the sum is apparently incorrectly normalized,
but the factor T [n2� p2] in the phase turns out to both restore the correct normalization
upon computing the integral of the complex exponential in (3.1), and to give the desired
concentration on the set n2 = p2 as T ! 1. These three features are the key arguments
allowing us to prove Theorem 1 in Section 5. In particular, a key step in the present
model computation lies in explicitely computing the integral

R t
0 exp(iT [n2 � p2]s)ds to

restore the correct normalization of the sum (3.1), and we wish to mention that this step
\simply" has to be replaced by the bound (5.9) in the general case as treated in Section 5.

Now, we come to the study of SL;T . It is �rst natural to split SL;T (�) into a non-
resonant contribution, for which n2 6= p2 in (3.1), and a resonant contribution, for which
n2 = p2, as follows,

SL;T =
1

Ld+(d�2)
X

(n; p) 2 Z
2d

n2 6= p2

� � � + 1

Ld+(d�2)
X

(n; p) 2 Z
2d

n2 = p2

� � � =: S(1)
L;T (�) + S

(2)
L;T (�) :

First step: study of the non resonant term
We �rst prove the bound,

jS(1)
L;T (�)j � C(")

L" logL

T ;
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for some constant C(") depending on " > 0, where " = 0 is allowed when d � 5, and we
recall,

S
(1)
L;T (�) =

1

Ld+(d�2)
X

n2 6=p2
�

�
n

L
;
p

L

� Z t

s=0
exp(iT [n2 � p2]s) ds :

The analogous bound in the general case is (5.13) below.
Decomposing the sum

P
n2 6=p2 into a sum over the di�erent values of the di�erence

n2 � p2 := ! 2Z�, we readily obtain,

jS(1)
L;T (�)j �

1

Ld+(d�2)
X
!2Z�

X
n2�p2=!

�����n
L
;
p

L

� Z t

s=0
exp(iT !s) ds

��� ;
hence, by explicit computation of the exponential,

jS(1)
L;T (�)j �

C

T Ld+(d�2)
X
!2Z�

1

j!j
X

n2�p2=!

������nL; pL
����� :

Now, we �rst use the fact that � has compact support, so that the above sum is actually
restricted to bounded values of n2=L2 and p2=L2 hence, say, j!j � L2 and n2 � L2 up to
a multiplicative constant. This gives,

jS(1)
L;T (�)j �

C

T Ld+(d�2)
�

X
1�j!j�L2

1

j!j #f(n; p) 2Z
2d s. t. n2 � L2; p2 = n2 � !g: (3.2)

Secondly, we make use of the fundamental result (see (2.29)),

#fp 2Zd s:t: p2 = n2 � !g � C(")jn2 � !j d2�1+" ; (3.3)

in any dimension d � 3. Hence, in view of j!j � L2 and n2 � L2, we obtain,

#fp 2Zd s:t: p2 = n2 � !g � C(")Ld�2+" ;

so that,

jS(1)
L;T (�)j �

C(")

T Ld+(d�2)
X

1�j!j�L2

1

j!j � L
d � Ld�2+" � C(")

L" logL

T ! 0 ;

and (3.2) is proved. Note that the factor logL in (3.2) is directly related to the logarithmic
divergence of the harmonic series.

16



Remark 6 We heavily used the fact that the di�erence n2 � p2 belongs to Z, so that
no small denominator problems occur in the present study. This is the reason why the
analysis presented in this paper cannot be applied in the case where the initial Schr�odinger
equation is posed on a cube with rationally independent sides: in this case indeed, the
relation ! = n2 � p2 is replaced by ! =

Pd
i=1 �i(n

2
i � p2i ) for some rationaly independent

�i's in R, and one cannot use the implication ! 6= 0 ) j!j � 1 anymore. 2

Second step: study of the resonant term
It is de�ned as,

S
(2)
L;T (�) =

t

Ld+(d�2)
X

n2=p2

�

�
n

L
;
p

L

�
: (3.4)

We are thus led to studying \Riemann sums with quadratic constraint" as in (3.4) above,
and Theorem 2 together with (3.2) thus give in the regime (2.7),

lim
L;T !1

SL;T (�) = lim
L;T!1

S
(2)
L;T (�)

= 2
2;d

Z +1

�=0

Z
S2(d�1)

�2(d�2)+1�(�n; �p)d�d�(n)d�(dp) : (3.5)

The analysis of (3.1) is complete.

4 Proof of Theorem 1, part (i): explicit solution to the Von-
Neumann equation (2.8)

In this section, we explicitely compute the solution to (2.8). In order to do so, we �rst
need the following,

De�nition 1
(i) For any (!1; : : : ; !l) 2 Rl, we de�ne the following quantity,

Hl(!1; : : : ; !l) :=
Z t

s1=0

Z t�s1

s2=0
: : :

Z t�s1�:::�sl�1

sl=0
exp(iT [!1s1 + � � �+ !lsl]): (4.1)

Explicit formulae for Hl are given in (5.5) and (5.9) below.

(ii) For any values of (k0; k1; : : : ; kl) 2Z(l+1)d, we de�ne,

Vl
�
k0
L
;
k1
L
; : : : ;

kl�1
L

;
kl
L

�
:= bV �k0 � k1

L

� bV �k1 � k2
L

�
: : : bV �kl�1 � kl

L

�
: (4.2)
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Remark 7 We readily state some easy bounds on Hl and Vl.
Firstly, the following bound on Hl is trivial,

jHl(!1; : : : ; !l)j � jtjl
l!
: (4.3)

Secondly, due to the assumption V 2 S(Rd), it follows that for any M � 0, there exists a
constant C(M) such that,

j bV (n)j � C(M)hni�M : (4.4)

In particular we may upper-bound Vl as,����Vl �k0L ; k1L ; : : : ; klL
����� � C(M)lhk0 � k1

L
i�M : : :hkl�1 � kl

L
i�M ; (4.5)

for any M � 0. We mention that the following weaker bound is also of interest,����Vl�k0L ; k1L ; : : : ; klL
����� � C(M)lhk

2
0 � k21
L2

i�M : : : hk
2
l�1 � k2l
L2

i�M : (4.6)

2

With these notations, we are in position to state the,

Proposition 1 Part (i) of Theorem 2 holds true up to de�ning the quantities,

Ql;l0(t) =
1

Ld+(l+l
0)(d�2)

X
m;n;p;k1;::: ;kl�1;j1;::: ;jl0�1

exp
�
iT t[n2 � p2]

�
(4.7)

�Hl(m
2 � n2; m2 � k21; : : : ; m2 � k2l�1)

�Hl0(p
2 �m2; j21 �m2; : : : ; j2l0�1 �m2)

�Vl
�
n

L
;
k1
L
; : : : ;

kl�1
L

;
m

L

�
V�l
�
p

L
;
j1
L
; : : : ;

jl0�1
L

;
m

L

�
�0
�
m

L

�
�

�
n

L
;
p

L

�
;

when l � 1 and l0 � 1. This de�nition has to be extended when l = 0, l0 � 1 by,

Q0;l0(t) =
1

Ld+l
0(d�2)

X
n;p;j1;::: ;jl0

exp
�
iT t[n2 � p2]

�
(4.8)

�Hl0(p
2 � n2; j21 � n2; : : : ; j2l0�1 � n2)

�V�l
�
p

L
;
j1
L
; : : : ;

jl0�1
L

;
n

L

�
�0
�
n

L

�
�

�
n

L
;
p

L

�
;

and similarly when l � 1, l0 = 0. Also, when l = l0 = 0, we have to de�ne,

Q0;0(t) =
1

Ld

X
n

�0
�
n

L

�
�

�
n

L
;
n

L

�
: (4.9)
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Remark 8 For �xed values of the scaling parameters T and L, the series in �,P
l2N ; l02N(�i�)l(+i�)l

0Ql;l0(t) involved in (2.17) is easily seen to converge for any � 2 R.
Indeed, when l � 1 and l0 � 1 say, we may upper bound Ql;l0(t) as,

���Ql;l0(t)
��� � C(�)l+l

0 jtjl+l0
l! l0!

� 1

Ld+(l+l0)(d�2)

�
X

m;n;p;k1;::: ;kl�1;j1;::: ;jl0�1

hn� k1
L

i�(d+1)hk1 � k2
L

i�(d+1) : : :hkl�1 �m
L

i�(d+1)

�hp� j1
L

i�(d+1)hj1 � j2
L

i�(d+1) : : : hjl0�1 �m

L
i�(d+1)hm

L
i�(d+1)

� C(�; t)l+l
0
L2(l+l0)

l! l0!
; (4.10)

where we used successively (4.3), (4.5) for M = d + 1, j�0(n)j � Chni�(d+1), j�(n;p)j �
C(�), and (2.31) with N = d(l+ l0 + 1).

Clearly, the bound (4.10) implies that for �xed values of L and T , the series in (2.17)
behaves like C(L; T ; t;�)l+l0j�jl+l0(l!)�1(l0!)�1, hence the convergence. We mention in
passing that another estimate on Ql;l0(t) is available, see (5.15), which is uniform in T and
L, but it grows with l and l0. 2

Proof of Proposition 1
The proof is given in several steps.

First step: factorizing the solution to (2.8)
Let us de�ne the auxiliary function,

g(t; n; p) := exp
�
iT t[n2 � p2]

�
�(t; n; p) ; (4.11)

where � is the solution to (2.8). One easily checks from (2.8) and (4.11) that g(t; n; p)
satis�es,

@tg(t; n; p) = �i �

Ld�2
X
k2Zd

n
exp

�
iT t[n2 � k2]

� bV �n� k

L

�
g(t; k; p)

� exp
�
iT t[k2 � p2]

� bV �k � p

L

�
g(t; n; k)

o
; (4.12)

with initial data given by (2.5) as well. Now it is a standard procedure to observe that
the solution g(t; n; p) can be factorized under the form,

g(t; n; p) =
X
m2Zd

 m(t; n) m(t; p)
� ; (4.13)
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where the wave functions  m(t; n) satisfy,

@t m(t; n) = �i �

Ld�2
X
k

exp(iT t[n2 � k2]) bV (n� k

L
) m(t; k) ; (4.14)

with initial data given by,

 m(t; n)jt=0 = 1

L
d
2

r
�0(

m

L
) 1[n = m] : (4.15)

The proof of (4.13) is very simple: from (4.14), it is obvious that the right-hand-side
of (4.13) satis�es (2.8), with initial data given by (2.5) thanks to (4.15). We conclude
using the fact that the solution to (2.8) for a given initial data is unique. The problem
of computing the solution �(t; n; p) to the Von-Neumann equation (2.8) with initial data
(2.5) is thus reduced to computing the wave functions  m(t; n) (m 2 Zd) de�ned above,
solutions to the simpler Schr�odinger equation (4.14).

Second step: solving (4.14)
Integrating the equation (4.14) in time and taking the initial data (4.15) into account, we
readily obtain,

 m(t; n) =
1

L
d
2

r
�0(

m

L
)1[n = m] (4.16)

�i �

Ld�2

Z t

s=0
exp(iT s[n2 � k2]) bV (n� k

L
) m(s; k) ds :

Hence, solving (4.16) iteratively, we obtain,

 m(t; n) =

r
�0(

m

L
)1[n = m]

+
X
l�1

(�i�)l 1

L
d
2
+l(d�2)

X
k1;::: ;kl�1

Z t

s1=0

Z s1

s2=0
: : :

Z sl�1

sl=0

exp(iT s1[n2 � k21]) exp(iT s2[k21 � k22]) : : :exp(iT sl[k2l�1 �m2])

Vl(n
L
;
k1
L
; : : : ;

kl�1
L

;
m

L
)

r
�0(

m

L
) :

Now, we change variables, u1 = t � s1 ; u2 = t� s1 � s2 ; : : : ; ul = t � s1 � � � � � sl ; in
the above equation. This gives,

 m(t; n) =

r
�0(

m

L
)1[n = m] (4.17)

+
X
l�1

(�i�)l 1

L
d
2+l(d�2)

X
k1;::: ;kl�1

exp(iT t[n2 �m2])Vl
�
n

L
;
k1
L
; : : : ;

kl�1
L

;
m

L

�

�Hl(m
2 � n2; m2 � k21; : : : ; m

2 � k2l�1)
r
�0(

m

L
) :
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and the notations (4.1), (4.2) are used.

Last step: conclusion
Combining (4.17) and the factorization (4.13) proves Proposition 1. 2

5 Proof of Theorem 1, parts (ii) and (iii): Limiting be-
haviour of the solution to (2.8)

5.1 Preliminaries : precise formulation of Theorem 1 and scheme of the
proof

In this section we prove the following,

Proposition 2 Parts (ii) and (iii) of Theorem 1 hold true, where for each l and l0, Q1
l;l0(t)

admits the following value,

Q1
l;l0(t) = 2
l+l0+1

tl+l
0

l! l0!

Z +1

�=0

Z
S(d�1)(l+l

0+1)
Vl(�k0; �k1; : : : ; �kl�1; �m) (5.1)

�V�l (�j0; �j1; : : : ; �jl0�1; �m)�0(�m)�(�k0; �j0)

��(d�2)(l+l0+1)+1d�d�(m)d�(k0) : : :d�(kl�1)d�(j0) : : :d�(jl0�1) :

This de�nition is easily extended to the cases l = 0 or l0 = 0. The claimed invariance of
�1(t) under the transformation (2.19) is easily seen on the explicit formulae (5.1) and
(2.18). The convergence of the series (2.18) under assumption (A') is a consequence of
the easy estimate (5.2) below.

Remark 9 Let R be the typical size of the support of �, and assume (A') holds true.
Then we have the easy estimate,

���Q1
l;l0(t)

��� � C(t)l+l
0

l! l0!
R(d�2)(l+l0+1)+2 ; (5.2)

where we used that jVlj � Cl. 2

Clearly, Theorem 1 is completely proved once Proposition 2 is proved. On the more,
in view of part (i) of Theorem 1, we only have to study the asymptotic behaviour of each
term Ql;l0(t) (see (4.7)) as T and L go to in�nity in order to prove Proposition 2.

Now, the method of proof of Proposition 2 is the following. It follows exactly the same
lines as the model computation of section 3. The proof occupies the whole remainder part
of the present Section (Subsections 5.2 to 5.3.3).

Firstly, we observe that the explicit formula (4.7) involves the factorsHl(m2�n2; : : : ; m2�
k2l�1)Hl0(m

2 � p2; : : : ; m2 � j2l0�1). On the other hand, the de�nition of the function
Hl(!1; : : : ; !l) clearly indicates that Hl \concentrates" on the set !1 = : : : = !l = 0 as T
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goes to in�nity. Our �rst step is thus to give precise bounds on Hl which give the desired
quantitative version of this fact (subsection 5.2, estimate (5.9)).

As a consequence, the sum (4.7) is expected to concentrate on the \resonant" set,
de�ned as,

f(m;n; p; k1; : : : ; kl�1; j1; : : : ; jl0�1) 2Zd(l+l0+1) such that (5.3)

n2 = p2 = m2 = k21 = � � � = k2l�1 = j21 = � � � = j2l0�1g :
If the \non-resonant" set is de�ned as the complementary set to the resonant set, our
second step is to prove that the asymptotic contribution of the \non-resonant" set (see
the term Qnr

l;l0(t) in (5.12)) converges indeed to zero (subsection 5.3.2, estimate (5.13))
This is the most di�cult task while proving proposition 2.

The problem thus reduces to compute the asymptotic contribution of the set m2 =
n2 = p2 = � � � in the sum (4.7) (see the term Qres

l;l0(t) in (5.11)). In other terms, we have
to deal with a Riemann sum with constraint as it is considered in Theorem 2. Our third
and last step thus consists in using Theorem 2 to conclude (subsection 5.3.3). The proof
of Theorem 2 itself is deferred to the next section.

5.2 Part I of the proof: Explicit formulae and bounds for Hl

In this section, we �rst explicitely compute Hl as de�ned in (4.1). Then we indicate how
to upper-bound the quantity Hl. The bounds obtained in this section will standly be used
in the asymptotic analysis of the terms Ql;l0(t) performed in Subsections 5.3.2 and 5.3.3.

5.2.1 An explicit formula for Hl

We begin with the easy,

Lemma 1 De�ning Hl(!1; : : : ; !l) as in (4.1). Also, de�ne conventionally,

!l+1 := 0 ; (5.4)

and consider Hl as a function of the (l+ 1)-tuple (!1; : : : ; !l; !l+1), a convention standly
used in the sequel. Then, we have the following explicit formula,

Hl(!1; : : : ; !l) =
l+1X
k=1

exp(iT t!k)
l+1Y
j = 1
j 6= k

[iT (!k � !j)]

: (5.5)
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Proof of Lemma 1

We write,

Hl =
Z t

u1=0
: : :

Z t�u1�����ul�2

ul�1=0
exp(iT [u1!1 + � � �+ ul�1!l�1])

�
Z t�u1�����ul�1

ul=0
exp(iTul!l)

=

Z t

u1=0
: : :

Z t�u1�����ul�2

ul�1=0
exp(iT [u1!1 + � � �+ ul�1!l�1])

�exp(iT (t� u1 � � � � � ul�1)!l�1)� 1

iT!l

=
1

iT!l
[exp(iT t!l)Hl�1(!1 � !l; : : : ; !l�1 � !l)�Hl�1(!1; : : : ; !l�1)] :

This gives a relation between Hl and Hl�1, and formula (5.5) follows by induction. 2

5.2.2 Bounds on Hl

Using (5.5), we want to derive bounds on Hl when the !'s vary in Z. In view of
(5.5), the bound necessarily depends on the number of di�erent !i's in the (l + 1)-tuple
(!1; : : : ; !l; !l+1 := 0). If r is the latter number, with 1 � r � l+ 1, one readily hopes for
a bound of the kind jHlj � C=T r�1. Indeed in the extreme case where r = l+ 1 (this is a
\completely non-resonant case"), Hl should decay like T �l as T ! 1, and in the opposite
case where r = 1 (all the phases are equal to zero, this a \completely resonant case"), Hl

is constant with T . This hope is made quantitative below, and the precise bound (5.10)
is the �nal result of this subsection.

In order to simplify the presentation, we will adopt the convention (5.4). We also need
to introduce some notations.

Considering Hl as a function of the (l+1)-tuple (!1; : : : ; !l; !l+1) (with !l+1 := 0), we
see from formula (5.5) that all the two-by-two di�erences !k � !j (k, j = 1; : : : ; (l+ 1))
are involved in the denominators. On the other hand, Hl is clearly a smooth function of
the !i's. This is easily seen from the very de�nition of Hl. Hence for a given (l+ 1)-tuple
(!1; : : : ; !l; !l+1), it is natural to group equal !i's, as follows: using the symmetry of Hl

in (!1; : : : ; !l), we can always assume (up to re-indexing the !i's) that there exist integer
numbers,

r � 1 ; a1 � 1 ; : : : ; ar � 1 ; (5.6)

such that a1 + � � �+ ar = l+ 1 ;

23



and the following holds,


1 := !1 = !2 = � � �= !a1

2 := !a1+1 = !a1+2 = � � �= !a1+a2
...

r�1 := !a1+���+ar�2+1 = !a1+���+ar�2+2 = � � � = !a1+���+ar�1

r := !a1+���+ar�1+1 = � � � = !a1+���+ar = 0 :

(5.7)

This serves as a de�nition for the quantities 
1, : : : , 
r naturally associated with any
given (l + 1)-tuple (!1; : : : ; !l; !l+1). Using these notations, we implicitely assume that
di�erent 
i's have di�erent values i.e.,


i 6= 
j ; 8i 6= j : (5.8)

Obviously the number r represents the number of di�erent !i's in Hl as mentionned above.
With these notations, we easily prove the,

Lemma 2 Under the notations and conventions (5.4), (5.6), (5.7), and (5.8), the follow-
ing bound holds on the quantity Hl,

jHl(!1; : : : ; !l)j � C(t; l)

T r�1
rX

s=1

1
rY

s0 = 1
s0 6= s

j
s � 
s0 j
: (5.9)

Proof of Lemma 2
Using the convention (5.7), we write,

jHlj(!1; : : : ; !l) = jHlj(
1; : : : ;
1| {z }
a1 terms

; : : : ;
r�1; : : : ;
r�1| {z }
ar�1 terms

; 0; : : : ; 0| {z }
ar terms

)

= jHlj(
1; : : : ;
1| {z }
a1�1 terms

; : : : ;
r�1; : : : ;
r�1| {z }
ar�1�1 terms

; 0; : : : ; 0| {z }
ar terms

;
1;
2; : : : ;
r�1) ;

where we used the symmetry of Hl in (!1; : : : ; !l). Now, using the well-known fact,Z t

s1=0
: : :

Z t�s1�����sn�1

sn=0
1 ds1 : : : dsn =

tn

n!
;

with the value n = (a1 � 1)+ (a2� 1)+ � � �+ (ar�1 � 1)+ (ar � 1) = l+ 1� r, we obtain,

jHl(!1; : : : ; !l)j � jtj(a1�1)+(a2�1)+���+(ar�1�1)+(ar�1)
[(a1 � 1) + (a2 � 1) + � � �+ (ar�1 � 1) + (ar � 1)]!

� sup
t2R

��� Z t

s1=0
: : :

Z t�s1�����sr�2

sr�1=0
exp(iT [s1
1 + � � �+ sr�1
r�1])

���
� jtjl+1�r

(l + 1� r)!
1

T r�1
rX

s=1

1
rY

s0 = 1
s0 6= s

j
s � 
s0 j
(5.10)
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and the last line comes from the use of the explicit formula (5.5). The Lemma is proved.
2

5.3 Part II of the proof: Asymptotic behaviour of Ql;l0(t)

5.3.1 The splitting of Ql;l0(t)

According to the splitting of Zd(l+l
0+1) into a \resonant" set (5.3) and its complementary,

we de�ne the resonant part of Ql;l0(t) as,

Qres
l;l0(t) =

1

Ld+(l+l
0)(d�2)

X
res

tl+l
0

l! l0!
Vl(n

L
;
k1
L
; : : : ;

kl�1
L

;
m

L
) (5.11)

�V�l (
p

L
;
j1
L
; : : : ;

jl0�1
L

;
m

L
)�0(

m

L
)�(

n

L
;
p

L
) 6= : : : 6= 
r�1 6= 
r(= 0) ;

where the symbol
P

res : : : means the sum over the \resonant" set (5.3). The term Qres
l;l0(t)

is exactly the contribution of the resonant set (5.3) to Ql;l0(t). Also, we may de�ne the
non-resonant term Qnr

l;l0(t) as,

Qnr
l;l0(t) =

1

Ld+(l+l0)(d�2)
X
nr

exp
�
iT t[n2 � p2]

�
(5.12)

�Hl(m
2 � n2; : : : ; m2 � k2l�1)Hl0(p

2 �m2; : : : ; j2l0�1 �m2)

�Vl(n
L
;
k1
L
; : : : ;

kl�1
L

;
m

L
)V�l (

p

L
;
j1
L
; : : : ;

jl0�1
L

;
m

L
)�0(

m

L
)�(

n

L
;
p

L
) ;

where the sum
P

nr : : : is extended to the non-resonant set de�ned as the complementary
set to the resonant set (5.3).

5.3.2 The convergence of the non-resonant term Qnr
l;l0(t) towards zero

In this section, we prove the following,

Theorem 3 The non-resonant term is estimated by,���Qnr
l;l0(t)

��� � C("; t; l; l0;�)
L" logL

T ; (5.13)

for some constant C("; t; l; l0;�) depending in particular on " > 0. The value " = 0 is
allowed in dimensions d � 5. Hence, as L and T go to in�nity in the regime (2.7) we
have,

Qnr
l;l0(t)! 0 : (5.14)

Remark 10 Under the assumption (A'), the only uniform estimate we are able to prove
on Qnr

l;l0(t) is actually of the form,���Qnr
l;l0(t)

��� � C("; t;�)l+l
0
(l! l0!)

d
2�2 L

" logL

T : (5.15)
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For dimensions d � 5, the presence of factorial terms on the right-hand-side of (5.15) is
the very reason for the fact that we are only able, in this paper, to prove the term-by-term
convergence of the series, h�I(t);�i = P

l;l0(�i�)l (+i�)l
0 Ql;l0(t) ; and not the stronger

convergence of the full series. The above estimate may be useful in dimension 3. Since we
are not able to prove (A') in this case yet, we do not give the proof of the precise estimate
(5.15) and simply prove the weaker bound (5.13) for the sake of simplicity. 2

Proof of Theorem 3
The proof of (5.13) is decomposed into several steps.

First step: The splitting of Qnr
l;l0(t)

In view of the bound (5.9) obtained on Hl above, we need to split further the sum over
the integers (m;n; p; k1; : : : ; kl�1; j1; : : : ; jl0�1) which de�nes the term Qnr

l;l0(t). Namely for
a given value of (m;n; p; k1; : : :), we may introduce the vectors,

(!1; : : : ; !l; !l+1) := (m2 � n2; m2 � k21; : : : ; m2� k2l�1; 0) ; (5.16)

together with,

(!01; : : : ; !
0
l; !

0
l+1) := (m2 � p2; m2 � j21 ; : : : ; m2 � j2l0�1; 0) : (5.17)

From its de�nition we know that Qnr
l;l0(t) is de�ned as a sum over the integers m, n, p, k1,

: : : , such that,

(!1; : : : ; !l+1; !
0
1; : : : ; !

0
l0+1) 6= (0; : : : ; 0) : (5.18)

Now, following the discussion made in bounding Hl above, we split the sum over (m;n; p; k1; : : :)
as follows.

For a given value of (m;n; p; k1; : : :), let r be the number of di�erent components in
the vector,

(!1; : : : ; !l; !l+1) ;

and r0 be the number of di�erent components in the vector,

(!01; : : : ; !
0
l; !

0
l0+1) :

From the de�nition of the non-resonant term Qnr
l;l0(t), we readily have,

1 � r � l + 1 ; 1 � r0 � l0 + 1 ; 2 < r + r0 � l + l0 + 2 : (5.19)

Now, up to renaming the variables, we may assume, using the symmetry of Hl upon its
arguments, that we can �nd integers,

a1 � 1; : : : ; ar � 1; such that, a1 + � � �+ ar = l + 1; (5.20)
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and,

b1 � 1; : : : ; br0 � 1; such that, b1 + � � �+ br0 = l0 + 1; (5.21)

and the following relations are satis�ed,


1 := !1 = !2 = � � �= !a1

2 := !a1+1 = !a1+2 = � � �= !a1+a2
...

r�1 := !a1+a2+���+ar�2+1 = !a1+a2+���+ar�2+2 = � � � = !a1+a2+���+ar�1

r := !a1+���+ar�1+1 = � � � = !a1+���+ar = 0 ;

(5.22)

and,


01 := !01 = !02 = � � �= !0b1

02 := !0b1+1 = !0b1+2 = � � � = !0b1+b2
...

0r0�1 := !0b1+b2+���+br0�2+1 = !0b1+b2+���+br0�2+2 = � � �= !0b1+b2+���+br0�1

0r0 := !0b1+���+br0�1+1 = � � � = !0b1+���+b0r = 0 :

(5.23)

This serves as a de�nition for the integers (
1; : : : ;
r) together with (

0
1; : : : ;


0
r0), which

are conventionnaly assumed all di�erent (i.e. 
i 6= 
j , 8i 6= j, and 
0i 6= 
0j , 8i 6= j).
In this perspective, the non-resonant term Qnr

l;l0(t) can be decomposed as a sum over all
possible values of r, r0, a := (a1; : : : ; ar), b := (b1; : : : ; br0) such that (5.19), (5.20), (5.21)
are ful�lled, of a sum of all the contributions stemming from integers (m;n; p; k1; : : :)
satisfying (5.16), (5.17), together with (5.22) and (5.23). We thus de�ne, for any such
values of r, r0, a = (a1; : : : ; ar), b = (b1; : : : ; br0), the quantity,

Qnr
l;l0 [r; r

0; a; b](t) :=
1

Ld+(l+l
0)(d�2)

X
nr�

exp
�
iT t[n2 � p2]

�
(5.24)

�Hl(m
2 � n2; : : : ; m2 � k2l�1)Hl0(p

2 �m2; : : : ; j2l0�1 �m2)

�Vl(n
L
;
k1
L
; : : : ;

kl�1
L

;
m

L
)V�l0(

p

L
;
j1
L
; : : : ;

jl0�1
L

;
m

L
)�0(

m

L
)�(

n

L
;
p

L
) ;

where the symbol
P

nr� : : : denotes the sum over all possible integers
(m;n; p; k1; : : : ; kl�1; j1; : : : ; jl0�1) such that the above mentionned constraints are satis-
�ed. Under these notations, we have the following splitting of Qnr

l;l0(t),

Qnr
l;l0(t) =

X
r;r0;a1;::: ;ar;b1;::: ;br0

Qnr
l;l0 [r; r

0; a; b](t) ; (5.25)

where the sum is extended over all possible values of (r; r0; a1; : : : ; ar; b1; : : : ; br0) such that
(5.19), (5.20) and (5.21) are satis�ed.
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Second step: a bound on Qnr
l;l0 [r; r

0; a; b](t)
According to the splitting (5.25) we now take some given value of the parameters r, r0,
(a1; : : : ; ar), (b1; : : : ; br0) as in (5.19), (5.20), (5.21), and we turn to bounding the contri-
bution Qnr

l;l0 [r; r
0; a; b](t). We actually prove that it is bounded like,

���Qnr
l;l0 [r; r

0; a; b](t)
��� � C("; t; l; l0;�)

L" logL

T ; (5.26)

for some constant C("; t; l; l0;�) as in (5.13). Clearly, proving (5.26) is enough to establish
(5.13).

In order to establish (5.26), we bound separately in (5.24) the factors Hl(: : :), Hl0(: : :)
on the one hand, and Vl(: : : ), V�l0(: : :)�0(: : :)�(: : :) on the other hand.

Firstly, on the set de�ning Qnr
l;l0 [r; r

0; a; b](t), and with the convention (5.16), (5.17), we
can use the upper bound on Hl obtained in (5.9), and thus write in (5.24),

jHl(m
2 � n2; : : : ; m2 � k2l�1)j �

C(t; l)

T r�1
rX

�=1

1
rY

�0 = 1
�0 6= �

j
�0 � 
�j
; (5.27)

together with,

jHl0(p
2 �m2; : : : ; j2l0�1 �m2)j � C(t; l0)

T r0�1
r0X
�=1

1
r0Y

�0 = 1
�0 6= �

j
0�0 � 
0� j
: (5.28)

Recall that all the two-by-two di�erences j
� � 
�0j and j
� � 
�0j are conventionally
non-vanishing (hence � 1).

Secondly, we may use the bound (4.6) to bound the factors involving Vl. Also, we may
use the decay assumption on �0 under the form j�0(n)j � Chn2i�M for some large value
M to be chosen later, together with j�(� � �)j � C(�). Hence we may bound in (5.24),����Vl(nL; : : : ; mL )V�l0(

p

L
; : : : ;

m

L
)�0(

m

L
)�(

n

L
;
p

L
)

����
� C(l; l0;�)hn

2 � k21
L2

i�M : : : hk
2
l�1 �m2

L2
i�M

�hp
2 � j21
L2

i�M : : :hj
2
l�1 �m2

L2
i�M hm

2

L2
i�M :
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Using the constraints (5.22) and (5.23) allows to rewrite this upper-bound in terms of the
variables 
i (i = 1; : : : ; r), 
0i (i = 1; : : : ; r0), and m, giving,����Vl(nL; : : : ; mL )V�l0(

p

L
; : : : ;

m

L
)�0(

m

L
)�(

n

L
;
p

L
)

����
� C(l; l0;�)h
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i�M h
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L2
i�M

�h

0
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02
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i�M : : :h

0
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r0�1

L2
i�Mh


0
r0�1
L2

i�Mhm
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i�M

� C(l; l0)

"
r�1Y
i=1

h
i

L2
i�M

# 24r0�1Y
i=1

h

0
i

L2
i�M

35 hm
2

L2
i�M : (5.29)

Combining (5.27), (5.28) and (5.29) together gives in (5.24),

���Qnr
l;l0 [r; r

0; a; b](t)
��� � C(t; l; l0;�)

T r+r0�2
1

Ld+(l+l
0)(d�2) (5.30)
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1; : : : ;
r�1;


0
1
; : : : ;
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r0�1

h rX
�=1

1
rY

�0 = 1
�0 6= �

j
�0 � 
�j

ih r0X
�=1

1
r0Y

�0 = 1
�0 6= �

j
0�0 � 
0�j

i

�
"
r�1Y
i=1

h
i

L2
i�M

# 24r0�1Y
i=1

h

0
i

L2
i�M

35 hm
2

L2
i�M �#m;
;
0 ;

up to de�ning,

#m;
;
0 :=

#f(m; k0; : : : ; kl�1; j0; : : : ; jl0�1) s. t. (5.16), (5.17), (5.22), (5.23) hold g ; (5.31)

and the sum in (5.30) is now extended over all possible values of m 2 Zd, 
's and 
0's
in Zsuch that the di�erences j
� � 
�0 j and j
0� � 
0�0 j do not vanish, a convention we
keep throughout the remainder part of the present proof. This bound is analogous to the
bound (3.2) of the model computation in section 3.

Thirdly, and analogously to the procedure of section 3, we may use the bound (2.29)
to estimate the cardinality #m;
;
0 above as (compare with (3.3)),

#m;
;
0 � C(")(m2 � 
1)
( d2�1+")a1 : : : (m2 � 
r�1)(

d
2�1+")ar�1(m2)(

d
2�1+")(ar�1)

�(m2 � 
01)
( d2�1+")b1 : : : (m2 � 
0r0�1)

( d2�1+")br0�1(m2)(
d
2�1+")(br0�1) :
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Normalizing the right-hand-side by the correct power of L for future convenience, and
separating the dependence upon the various variables gives,

#m;
;
0 � C("; l; l0)
h
L2
i( d

2�1+")(a1+���+ar+b1+���+br0�2)

"
r�1Y
i=1

h
i

L2
i( d2�1+")ai

# 24r0�1Y
i=1

h

0
i

L2
i( d2�1+")bi

35 hm2

L2
i( d2�1+")(a1+���+ar+b1+���+br0�2) ;

and, using (5.20), (5.21) to observe that a1 + � � �+ ar + b1+ � � �+ br0 � 2 = l+ l0, together
with ai � l and bi � l0 for all i, we get,

#m;
;
0 � C("; l; l0)L(d�2+")(l+l0) (5.32)"
r�1Y
i=1

h
i

L2
i( d2�1+")l

# 24r0�1Y
i=1

h

0
i

L2
i( d2�1+")l

35 hm2

L2
i( d2�1+")(l+l0) :

Fourthly, there remains to insert estimate (5.32) on the cardinality #m;
;
0 in (5.30).
This gives,���Qnr

l;l0 [r; r
0; a; b](t)

��� � C("; t; l; l0;�)
T r+r0�2

L"

Ld
(5.33)
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h rX
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1
rY

�0 = 1
�0 6= �

j
�0 � 
�j

ihX
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1
r0Y

�0 = 1
�0 6= �

j
0�0 � 
0�j

i

�
"
r�1Y
i=1

h
i

L2
i�M+l

# 24r0�1Y
i=1

h

0
i

L2
i�M+l0

35 hm
2

L2
i�M+l+l0 :

There only remains now to estimate the reference sum on the right-hand-side of (5.33).
From now on, we assume that the exponentM is chosen so large thatM�l � 2,M�l0 � 2,
and M � l � l0 � d+ 2.

Third step: estimating (5.33) for small values of the denominators j
��
�0 j, j
0� �
0�0 j
The right-hand-side of (5.33) is estimated upon separating, for each pair (�; �0) and (�; �0),
the cases j
��
�0 j � L2 and j
��
�0 j � L2 , and similarly for j
0��
0�0 j. This gives rise
to 2l+l

0
di�erent cases. The present step is devoted to the study of the case where all the

above mentionned di�erences are � L2. The next step studies the opposite extreme case
where all these di�erences are � L2. All the other intermediate cases are easily treated
upon combining accordingly the di�erent techniques we propose here.

In the present case, the key lies in �rstmajorizing all the decaying factors h
i=L
2i�M+l

and h
0i=L2i�M+l0 by one, secondly using that
PL2


=1 

�1 � C logL, for 
 = j
� � 
�0j,
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and thirdly using that L�d
P

mhm2=L2i�M+l+l0 � C, see (2.31). Indeed,
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�0 j � L2]

j
�0 � 
�j

3775 hm
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0�0j � L2]
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0� j
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Ld

X
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#

� C("; t; l; l0;�)L"

T r+r0�2 [logL]r�1 [logL]r
0�1

= C("; t; l; l0;�)
�
L" logL

T
�r+r0�2

: (5.34)

As a conclusion, (5.34) establishes that the contribution to Qnr
l;l0 [r; r

0; a; b](t) due to 
's

and 
0's such that the corresponding two-by-two di�erences are all � L2 satis�es indeed
the estimate (5.13) of Theorem 3 in the regime (2.7), since r + r0 > 2 from (5.19).

Fourth step: estimating (5.33) for large values of the denominators j
��
�0 j, j
0��
0�0 j
As explained in the previous step, we now turn to estimating the contribution to
Qnr
l;l0 [r; r

0; a; b](t) due to 
's and 
0's such that the corresponding two-by-two di�erences

are all � L2. Now the idea lies in �rst majorizing all the factors 1=j
� � 
�0 j by 1=L2

and the same for the primed variables, and secondly majorizing the remaining sum over
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m, 
's, and 
0's as a simple Riemann sum by (2.31). Indeed,
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35 hm2

L2
i�M+l+l0

� C("; t; l; l0;�)L"

T r+r0�2 : (5.35)

As a conclusion, (5.35) establishes that the contribution to Qnr
l;l0 [r; r

0; a; b](t) due to 
's

and 
0's such that the corresponding two-by-two di�erences are all � L2 satis�es indeed
the estimate (5.13) of Theorem 3 (it satis�es actually a stronger estimate).

Last step: conclusion
The third and fourth steps of the present proof are enough to prove that the full term
Qnr
l;l0 [r; r

0; a; b](t) satis�es indeed (5.13). This is done upon combining the techniques used

in these steps to treat the general contribution when some di�erences j
��
�0 j are � L2

and some are � L2 (and the same for primed variables). Hence the non-resonant term
Qnr
l;l0(t) itself satis�es (5.13) and Theorem 3 is proved. 2

5.3.3 The limit of Ql;l0(t)

From the above subsection we have the equivalence,

Ql;l0(t) � Qres
l;l0(t) ;

as L and T go to in�nity in the regime (2.7) under consideration. It remains to compute
the actual limit of the resonant term Qres

l;l0(t), where, as we already observed (see (5.11)),

Qres
l;l0(t) =

1

Ld+(d�2)(l+l0)
X
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tl+l
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l! l0!
Vl
�
n

L
;
k1
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; : : : ;
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;
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L
;
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; : : : ;
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;
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�
�0
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L
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�

�
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L
;
p

L

�
;
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and the symbol
P

res : : : denotes a sum over the resonant set (5.3) as before. Now, it is an
easy consequence of the Theorem 2 (Riemann sums with quadratic constraints) that this
term actually converges towards Q1

l;l0(t) as de�ned in Proposition 2, equation (5.1). This
concludes the proof of Proposition 2, hence the proof of Theorem 1 upon using Theorem
2.

6 Proof of Theorem 2: Riemann sums with quadratic con-
straints

In this section we prove Theorem 2 using assumption (A).
Before proving Theorem 2, we �rst state the following Lemma, which is a consequence

of the asymptotic formulae (2.22) and (2.23) proved in [CP]. Theorem 2 turns out to be
an easy consequence of the present Lemma.

Lemma 3 Let � be as in Theorem 2, with a dimension d � 3, and assume (A) holds
true. Consider the sum,

JA;�(�) :=
1

1 + A1��
A+A1��X
B=A

1

B(N+1)( d
2�1)

(6.1)

�
X

(k0;::: ;kN )2Z(N+1)d

�

�
k0p
B
; : : : ;

kNp
B

�
1[k20 = � � � = k2N = B] :

Assume �nally that 0 < � < �0(d) and moreover � < 3=4 in dimension d = 3. Then, the
following asymptotic holds true,

JA;�(�)!A!1 
N+1;d

Z
S(N+1)(d�1)

�(k0; : : : ;kN)d�(k0) : : :d�(kN) : (6.2)

Remark 11 Here and throughout this Section we will use the following two notations.
At �rst, for any A 2 N, we associate the cardinality,

#A := #fn 2Zd s.t. n2 = Ag : (6.3)

Also, for a given A 2 N and a given solid angle 
 � Sd�1, we introduce the cardinality,

#A;
 := #fn 2Zd s.t. n2 = A and
n

jnj 2 
g : (6.4)

2

Remark 12 Note that Lemma 3 gives a \localized" version of Theorem 2 in that it
considers limits of the type IN(�) as in Theorem 2 when the common value k20 = � � � =
k2N = B 
uctuates of an amount O(A1��) around the �xed value A, whereas this value B
can take any value between 0 and L2 in Theorem 2. 2
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Proof of Lemma 3

The proof is given in several steps.

First step: preliminary observations
At �rst we observe from the well-known asymptotics (2.24) that assumption (A) readily
transforms into,

1

1 +A1��
A+A1��X
B=A

S(B)l !A!1 
l;d

�
�(d=2)

�(3=2)d

�l
: (6.5)

In particular, the right-hand-side of (6.5) is bounded, i.e.,

1

1 + A1��
A+A1��X
B=A

S(B)l � C(l) ; (6.6)

for some constant C(l). Note that the assumption (A') even asserts C(l) = Cl.
The second observation lies in the fact that it is enough to prove the Lemma when �

is of the form,

�(k0; : : : ;kN) = 1(k0 2 
0) : : :1(kN 2 
N) ; (6.7)

for some solid angles 
0 � Sd�1, : : : , 
N � Sd�1. Indeed, we have the following obvious
bound,

jJA;�j � k�kL1 1

1 +A1��
A+A1��X
B=A

1

B(N+1)( d2�1)
(#B)

N+1

� C(N)k�kL1 1

1 +A1��
A+A1��X
B=A

S(B)N+1

� C(N)k�kL1 ;

where the second line comes from using the asymptotics (2.24), and the last line comes
from assumption (A) under the form (6.5). On the more, it is clear from (6.2) that the
sum JA;�(�) only involves the dependence of � upon the angular variables k0=jk0j, : : : ,
kN=jkN j. Now, since linear combinations of functions of the form (6.7) is dense in the set
of smooth functions � de�ned over S(d�1)(N+1), our claim (6.7) is proved.

The third and last observation is the following. As a consequence of (2.22) and (2.23),
we have for any 
 � Sd�1 and any 0 < � < 1 (� < 3=4 in dimension d = 3),

1

1 + A1��
A+A1��X
B=A

#B;


#B
!A!1 d�(
) : (6.8)
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Now we claim that (6.8) implies the following asymptotics, valid for any power P 2 N�,

1

1 +A1��
A+A1��X
B=A

�
#B;


#B

�P
!A!1 (d�(
))P : (6.9)

Let us indeed prove (6.9) from (6.8). By an easy induction on P , (6.9) is proved once the
following limit is established,

1

1 + A1��
A+A1��X
B=A

�
#B;


#B
� d�(
)

��
#B;


#B

�P
!A!1 0 ; (6.10)

for any P 2 N�. Now (6.10) is proved by Abel summation,

1

1 +A1��
A+A1��X
B=A

�
#B;


#B
� d�(
)

��
#B;


#B

�P

=
A+A1��X
B=A

1

1 + A1��

"
BX

C=A

�
#C;


#C

�
� d�(
)

#"�
#B;


#B

�P
�
�
#B+1;


#B+1

�P #

+
1

1 + A1��

24A+A1��X
C=A

�
#B;


#B

�
� d�(
)

35
�
24 #A+A1�� ;


#A+A1��

!P

�
 
#A+A1��+1;


#A+A1��+1

!P
35 : (6.11)

On the one hand, for any B between A and A+ A1��, it is clear that,

1

1 + A1��
BX

C=A

��
#C;


#C

�
� d�(
)

�
!A!1 0 :

Indeed, this is clear when B � A = o(A1��) by mere boundedness of the summand, and
this is a consequence of (2.22) and (2.23) when B�A � C A1�� for some constant C. On
the other hand, we may bound,

#B;


#B
� 1 ;

trivially. These two observations are enough to prove that the right-hand-side of (6.11)
goes to zero, hence (6.9) is proved.

Second step: proving the Lemma when (6.7) holds
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In this case we write,

JA;�(�) =
1

1 + A1��
A+A1��X
B=A

1

B( d
2�1)(N+1)

#B;
0 : : :#B;
N

�A!1

 
�(3=2)d

�(d=2)

!N+1
1

1 +A1��
A+A1��X
B=A

#B;
0

#B
: : :

#B;
N

#B
S(B)N+1 ;

where (2.24) has been used. Now, we claim that the following di�erence vanishes asymp-
totically,

1

1 + A1��
A+A1��X
B=A

�
#B;
0

#B
: : :

#B;
N

#B
� d�(
0) : : :d�(
N)

�
S(B)N+1

!A!1 0: (6.12)

Assuming (6.12) holds true for the moment, we deduce,

JA;�(�)

�A!1

 
�(3=2)d

�(d=2)

!N+1

d�(
0) : : :d�(
N)� 1

1 + A1��
A+A1��X
B=A

S(B)N+1

�A!1 
N+1;d d�(
0) : : :d�(
N) ;

thanks to assumption (A) under the form (6.5). Hence the Lemma is proved when � is
of the form (6.7), and formula (6.2) thus holds for any � by density.

There remains to prove (6.12). To do so it is enough to prove,

1

1 + A1��
A+A1��X
B=A

h�#B;
0

#B
� d�(
0)

�
#B;
1

#B
: : :

#B;
N

#B

i
S(B)N+1 !A!1 0 :

The above convergence is an easy consequence of the subsequent majorisations,

1
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A+A1��X
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0

#B
� d�(
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1
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#B;
N
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�
S(B)N+1

�
24 1

1 +A1��
A+A1��X
B=A

�
#B;
0

#B
� d�(
0)

�N+2
35 1

N+2

�
24 1
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A+A1��X
B=A

�
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1

#B

�N+2
35

1
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: : :

24 1

1 +A1��
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�
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35

1
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�
24 1
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35
1
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� C(N)

24 1

1 + A1��
A+A1��X
B=A

�
#B;
0

#B
� d�(
0)

�N+2
35 1

N+2

!A!1 0

where the �rst inequality comes from using H�older's inequality, and the second comes from
the bounds (6.6) and (6.9), together with the obvious bound #B;
i

=#B � 1 for any i.
This ends the proof of (6.12). 2

Proof of Theorem 2

Upon the use of Lemma 3 above, the proof of Theorem 2 now reduces essentially to the
use of certain Riemann sums in the variable A of Lemma 3.

First Step
First of all, we have the obvious a priori bound,

L�N(d�2)�d X
k0;::: ;kN

�(L�1k0; L�1k1; : : : ; L�1kN)1[k20 = k21 = : : : = k2N ]

� khxiiM�kL1 L�N(d�2)�dX
k0

h
#fk 2Zd s.t. k2 = k20g

iN hk0
L
i�M

� C(N)khk0iM�kL1 L�N(d�2)�dX
k0

jk0jN(d�2)hk0
L
i�M

� C(N)khk0iM�kL1 L�d
X
k0

hk0
L
i�M+N(d�2)

� C(N;M)khk0iM�kL1 ;

for some constant C(N;M), and for any M > N(d� 2) + 1. Indeed, the third line uses
the asymptotics (2.24), and the last line uses (2.31). By an easy density argument, it is
thus enough to prove the Theorem in the case where � is of the form,

�(k0; : : : ;kN) = 1[jk0j � R]1

�
k0
jk0j 2 
0

�
1

�
k1
jk1j 2 
1

�
: : :1

�
kN
jkN j 2 
N

�
�1[k20 = � � � = k2N ] ; (6.13)

for some R > 0, and some solid angles 
0 � Sd�1, � � � , 
N � Sd�1.

Second Step
Let � be of the form (6.13). In this case, the \Riemann sum" IL(�) takes the form,

IL(�) =
1

LN(d�2)+d

RL2X
A=0

#A;
0 : : :#A;
N
; (6.14)
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and we wish to pass to the limit L ! 1 in (6.14). In order to do so, we choose a small
increment,

h = L�
1
4 ; (6.15)

and we mention that there is a good deal of latitude in this choice of h. We decompose
the sum over A de�ning IL(�) into small \slices" of size hL2 accordingly,

IL(�) =
1

LN(d�2)+d

(R2=h)�1X
t=0

(t+1)hL2�1X
A=thL2

#A;
0 : : :#A;
N
: (6.16)

Note that we assume here for convenience that all bounds appearing in the above sums
are integer numbers.

Now, we wish to apply Lemma 3 to each sum
P(t+1)hL2�1

A=thL2 � � � in (6.16). To this aim,
we �rst need to put the \small" values of A apart, as follows: let � > 0 be an arbitrary
small cuto� parameter, we write,

IL(�) =
1

LN(d�2)+d

(�=h)X
t=0

(t+1)hL2X
A=thL2

#A;
0 : : :#A;
N

+
1

LN(d�2)+d

(R2=h)�1X
t=(�=h)

(t+1)hL2X
A=thL2

#A;
0 : : :#A;
N

=: I1L(�) + I2L(�) : (6.17)

This is the desired splitting of IL(�). We now study I1L(�) and I
2
L(�) separately.

Third step: study of I1L(�)
The term I1L(�) is easily upper-bounded,

jI1L(�)j =
1

LN(d�2)+d

(�+h)L2X
A=0

#A;
0 : : :#A;
N

� 1

LN(d�2)+d

(�+h)L2X
A=0

(#A)
N+1

� C(N)

LN(d�2)+d

(�+h)L2X
A=0

S(A)N+1A(N+1)( d2�1)

� C(N)

L2

(�+h)L2X
A=0

S(A)N+1(� + h)(N+1)( d2�1)

� C(N)(�+ h)(N+1)( d
2�1)+1 ; (6.18)
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where the third line uses (2.24), and the last line uses assumption (A) under the form
(6.6).

Fourth step: limiting behaviour of I2L(�)
To be able to apply Lemma 3, we �rst rewrite I2L(�) under the form,

I2L(�) = h

(R2=h)�1X
t=(�=h)

0@ 1

hL2

(t+1)hL2X
A=thL2

#A;
0 : : :#A;
N

A(N+1)( d2�1)

�
A

L2

�(N+1)( d2�1)
1A :

Firstly, assumption (A) together with the obvious estimate #A;
 � #A valid for any 

allow to establish the equivalence,

I2L(�) �L!1 h

(R2=h)�1X
t=(�=h)

(th)(N+1)( d2�1)
0@ 1

hL2

(t+1)hL2X
A=thL2

#A;
0 : : :#A;
N

A(N+1)( d
2�1)

1A : (6.19)

(Note that this equivalence depends on � > 0). We are now able to apply Lemma 3 in
(6.19) since hL2 = L3=4 � (thL2)1=4 = O(L1=2) for any t 2 [(�=h); (R2=h)]. We thus
write,

I2L(�) �L!1 h

(R2=h)�1X
t=(�=h)

(th)(N+1)( d2�1) (
N+1;dd�(
0) : : :d�(
N)) :

Treating the sum in t as a Riemann sum now gives,

I2L(�) �L!1

 Z R2

�=�
�(N+1)( d2�1)d�

!
(
N+1;dd�(
0) : : :d�(
N))

= 2

 Z R

�=
p
�
�(N+1)(d�2)+1d�

!
(
N+1;dd�(
0) : : :d�(
N)) ; (6.20)

where again the equivalence depends on � > 0.

Last step: conclusion
The estimate (6.18) together with the equivalence (6.20) are now enough to conclude that
for a general smooth and decaying �, the \Riemann sum" IL(�) goes to,

2
N+1;d

Z 1

�=0
�(N+1)(d�2)+1

Z
S(d�1)(N+1)

�(�k0; : : : ; �kN)d�(k0) : : :d�(kN)d� ;

as L!1. Theorem 2 is now proved. 2
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7 Proof of the assumption (A) in dimensions 4, 5, and more

7.1 The case d � 5

In this section we prove the following,

Lemma 4 Let d � 5. Then, for any l � 0, and for any 0 < � < 1, the limit 
l;d in (A)
exists. Besides, we have the explicit value,


l;d =

�
�(d=2)

�(3=2)d

�l X
q1; : : : ; ql
qi 2 N

� ; 8i

X
a1; : : : ; al

ai 2 [[1; qi]] ; 8i
gcd(ai; qi) = 1 ; 8i

1

�
a1
q1

+ : : :+
al
ql
2Z

�

�
�
S(q1; a1)

q1
: : :

S(ql; al)

ql

�d
; (7.21)

where the notation (2.26) is used. Finally, we have the bound,


l;d � C(d)l : (7.22)

Remark 13 As already mentionned in the introduction, a standard estimate on Gauss'
sums (see [Gr]) gives that jS(q; a)j � Cq1=2. Hence we have the obvious bound,����������

X
a1; : : : ; al

ai 2 [[1; qi]] ; 8i
gcd(ai; qi) = 1 ; 8i

1

�
a1
q1

+ : : :+
al
ql
2Z

��
S(q1; a1)

q1
: : :

S(ql; al)

ql

�d
����������

� Cl (q1 : : : ql)
� d

2+1 ;

implying both the convergence of the series in q1, � � � , ql in (7.21) when d � 5 and the
bound (7.22). 2

Proof of Lemma 4

We already noticed (see (6.5)) the relation,


l;d =

 
�(3=2)d

�(d=2)

!l

lim
A!1

1

1 +A1��
A+A1��X
B=A

S(B)l ; (7.23)

so that the mere limit on the right-hand-side of (7.23) has to be computed.
Now, we recall the value of the singular series (see (2.25)),

S(A) =
X
q2N�

qX
a = 1

gcd(a; q) = 1

�
S(q; a)

q

�d
exp

�
�2i� aA

q

�
:
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We are thus in position to compute,

1

1 + A1��
A+A1��X
B=A

S(A)l

=
X

q1 ; : : : ; ql
qi 2 N

� ; 8i

X
a1; : : : ; al

ai 2 [[1; qi]] ; 8i
gcd(ai; qi) = 1 ; 8i

�
S(q1; a1)

q1
: : :

S(ql; al)

ql

�d

� 1

1 +A1��
A+A1��X
B=A

exp

�
�2i�

�
a1
q1

+ � � �+ al
ql

�
B

�

!A!1
X

q1; : : : ; ql
qi 2 N

� ; 8i

X
a1; : : : ; al

ai 2 [[1; qi ]] ; 8i
gcd(ai; qi) = 1 ; 8i

�
S(q1; a1)

q1
: : :

S(ql; al)

ql

�d

�1
�
a1
q1

+ � � �+ al
ql
2Z

�
;

and the Lemma is proved. 2

7.2 The case d = 4

In this section we prove the following,

Lemma 5 Let d = 4. Then, for any l � 0, and any 0 < � < 1, there exists a constant
C(�) such that,

1

1 +A1��
A+A1��X
B=A

S(B)l � (C(�)l)l : (7.24)

In particular, for any given 0 < � < 1, there exists a subsequence in A such that the right-
hand-side of (7.24) converges as A ! 1, for any l � 0, so assumption (A) is satis�ed
with �0(4) = 1 up to subsequences in A.

Proof of Lemma 5
The proof is given in several steps.

At �rst, let us adopt the following notations for convenience: for any function f(B)
depending on the integer parameter B, we de�ne the following average,

hf(B)iA;� := 1

1 + A1��
A+A1��X
B=A

f(B) : (7.25)

Also, we de�ne the function,

e(x) := exp(2i�x) : (7.26)
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We thus have from its de�nition (see (2.25)),

S(B) =
X
q�1

X
a 2 [[1; q]]

gcd(a; q) = 1

�
S(q; a)

q

�d
e(�aB

q
) ; (7.27)

and S(q; a) is de�ned in (2.26).

First step: decomposing S into a partial sum and a remainder term
Let Q 2 N� be a given truncation parameter. We decompose the series de�ning S into
the contribution of q's satisfying q � Q and a remainder term, as follows,

S(B) =
X

1�q�Q

X
a 2 [[1; q]]

gcd(a; q) = 1

�
S(q; a)

q

�d
e(�aB

q
)

+
X
q�Q

X
a 2 [[1; q]]

gcd(a; q) = 1

�
S(q; a)

q

�d
e(�aB

q
)

=: SQ(B) + RQ(B) : (7.28)

This serves as a de�nition for the terms SQ(B) and RQ(B).
We wish to bound uniformly in A the average hS(B)liA;� for any integer l. According

to the above decomposition, the proof is obtained below by proving on the one hand that,

hSA(B)
liA;� � (C(�)l)l ; (7.29)

for any l, and that,

hRA(B)
liA;� � C(")l (logA)lA�1+" !A!1 0 ; (7.30)

for any l, where the truncation level Q is chosen equal to A in (7.29) and (7.30). Lemma
5 is obviously proved once (7.29) and (7.30) are established.

Second step: estimating RA

Following [CP], we �rst claim that the following bound holds,

RA(B) � C(")�(B) A�1+" ; (7.31)

where as usual �(B) denotes the number of divisors of B.
Assuming (7.31) for the moment, we �rst prove that this estimate implies (7.30).

Indeed, it is well-known (see [Te]) that �(B) satis�es,

�(B) � C logB :
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This together with (7.31) gives,

hRl
A(B)iA;� � Cl(logA)lA�1+" !A!1 0 : (7.32)

We now turn to the proof of (7.31). It relies on the simple observation (See [Ay], or
also [CP]),

S(q; a) =

�
a

q

� p
q �q ; (7.33)

where

�
a

q

�
is the so-called Jacobi-Legendre symbol of a and q, and �q is a sequence in q,

whose explicit value can be obtained (see [CP]). The important point to notice is,�
a

q

�
:= �1 ; and �q � C : (7.34)

Therefore, when d = 4, we obtain the following simpli�ed value of the singular series S,

S(B) =
X
q�1

�4q
q2
cq(B) ; (7.35)

where cq(B) is the so-called Ramanujan sum, de�ned as,

cq(B) :=
qX

a = 1
gcd(a; q) = 1

e

�
�aB

q

�
: (7.36)

We turn to estimating S or more precisely the associated remainder term RA under
the form (7.35). This relies on estimating cq. It is well-known (see [Te]) that cq(B) actually
admits the following value,

cq(B) =

'(q)�

�
q

gcd(q; B)

�
'

�
q

gcd(q; B)

� ; (7.37)

where '(q) is the so-called Euler totient function, and � is the M�obius function. We do
not recall the de�nitions of these functions but rather recall some basic bounds on them.
Indeed we have (see [Te]),

C(")q1�" � '(q) � q ; (7.38)

and,

j�(q)j � C : (7.39)
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Hence, putting (7.39), (7.38), and (7.37) together gives,

jcq(B)j � C
'(q)

'

�
q

gcd(q; B)

�
� C(")

q

q1�"
(gcd(q; B))1�" = C(")q" (gcd(q; B))1�" ;

so that we obtain in (7.35),

jRA(B)j �
X
q�A

C(")q�2+" (gcd(q; B))1�" = C(")
X

tjB ; tjq

q�A

q�2+"t1�"

� C(")
X

tjB ; tjq

q�A

q�2+"t = C(")
X
tjB

t

0BB@ X
q=0 mod t

q�A

q�2+"

1CCA
= C(")

X
tjB

t

0@ X
q�A=t

t�2+"q�2+"
1A

� C(")

0@X
tjB

1

1A A"�1 ;

and (7.31) is proved.

Fourth step: estimating the partial sum SA

For a given integer l, we �rst write,

hSl
A(B)iA;� =

1

1 + A1��
A+A1��X
B=A

X
1�q1;::: ;ql�A

X
a1; : : : ; al

ai 2 [[1; qi ]] ; 8i
gcd(ai; qi) = 1

 
lY

i=1

S(ai; qi)

qi

!4

�e
 
�
"

lX
i=1

ai
qi

#
B

!
:

Taking (7.33) into account, we can upper-bound,���hSl
A(B)iA;�

���
=

1

1 +A1��

����������
A+A1��X
B=A

X
1�q1;::: ;ql�A

X
a1; : : : ; al

ai 2 [[1; qi ]] ; 8i
gcd(ai; qi) = 1

 
lY

i=1

�4qi
q2i

!
e

 
�
"

lX
i=1

ai
qi

#
B

!����������
� Cl

X
1�q1;::: ;ql�A

1

q21 � � � q2l
� gq1;��� ;ql(A; �) ; (7.40)
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up to introducing the quantity,

gq1;��� ;ql(A; �) :=
X

a1; : : : ; al
ai 2 [[1; qi ]] ; 8i
gcd(ai; qi) = 1

1

1 + A1��

������
A+A1��X
B=A

e

 
�
"

lX
i=1

ai
qi

#
B

!������ : (7.41)

Now, using that g is symmetric in (q1; � � � ; ql), we may readily upper bound in (7.40),

���hSl
A(B)iA;�

��� � Cl
X

1�q1�����ql�A

gq1;��� ;ql(A; �)
q21 � � �q2l

: (7.42)

There remains therefore to estimate g as it is de�ned in (7.41).

Fifth step: estimating gq1;��� ;ql(A; �)
For any given values of the qi's, the function g is de�ned as a sum over all integers
ai 2 [[1; qi]] such that gcd(ai; qi) = 1 (i = 1; : : : ; l). Let Gq1;::: ;ql denote the set of all such
ai's. We are now naturally led to estimate di�erently several contributions arising from
the following subsets Gq1;::: ;ql .

a- First case: contribution of the subset
a1
q1

+ � � �+ al
ql
2Z

First of all, we easily estimate the cardinality of such ai's,

#

�
(a1; � � � ; al) 2 Gq1;::: ;ql s.t.

a1
q1

+ � � �+ al
ql
2Z

�
� q2 � � �ql :

(This is true at least if A � 2, which is the case here). For this reason, the corresponding
contribution to gq1;��� ;ql(A; �) is bounded by,

� q2 : : : ql
1 + A1�� (1 + A1��) = q2 : : : ql (7.43)

b- Second case: contribution of the set
a1
q1

+ � � �+ al
ql
=2Z

In this case we wish to use the easy estimate,

1

1 +A1��

������
A+A1��X
B=A

e

 
�
"

lX
i=1

ai
qi

#
B

!������ � inf

0BBBBB@1 ;
2

(1 + A1��)







lX

i=1

ai
qi








1CCCCCA ; (7.44)

where kzk := minn2Zjz�nj. For this reason we need to further subdivide the present case
according to whether the quantity kPl

i=1(ai=qi)k is \large" or \small", as follows.
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b-1- First sub-case: contribution of the set







lX

i=1

ai
qi






 � 1

q
1�(�=2)
1

The cardinality of l-tuples (a1; � � � ; al) 2 Gq1;::: ;ql satisfying







lX

i=1

ai
qi






 � 1

q
1�(�=2)
1

is trivially

bounded by q1 � � �ql. For this reason, the corresponding contribution to gq1;��� ;ql(A; �) is
bounded by,

� q1 : : : ql � q
1�(�=2)
1

1 +A1�� =
q
2�(�=2)
1 q2 : : : ql
1 +A1�� : (7.45)

b-2- Second sub-case: contribution of the set







lX

i=1

ai
qi






 � 1

q
1�(�=2)
1

It is known (see [Nie], [Gre], or also [Pl], and [Te]) that the quantity a1=q1 is \uniformly
distributed" in the interval [0; 1] as a1 varies with the constraints 1 � a1 � q1 and
gcd(a1; q1) = 1. As a consequence, it is readily seen that there exists a constant C(�)
such that for any z 2 R, we have,

#

(
a1 2 [[1; q1]] s:t: gcd(a1; q1) = 1 and





a1q1 � z





 � 1

q
1�(�=2)
1

)
#fa1 2 [[1; q1]] s:t: gcd(a1; q1) = 1g

� C(�)
1

q
1�(�=2)
1

: (7.46)

(Indeed, the left-hand-side of (7.46) behaves like 2=q
1��=2
1 as q1 ! 1). In other words,

the proportion of a1's satisfying the additional constraint ka1=q1 � zk � 1=q
1�(�=2)
1 has

the same size as the interval [z � q
(�=2)�1
1 ; z + q

(�=2)�1
1 ]. Now, (7.46) implies that, for any

z 2 R,

#

(
a1 2 [[1; q1]] s:t: gcd(a1; q1) = 1and





a1q1 � z





 � 1

q
1�(�=2)
1

)

� C(�)
1

q
1�(�=2)
1

� q1 = C(�)q
�=2
1 ;

and we readily deduce that,

#

(
(a1; : : : ; al) 2 Gq1;::: ;ql s:t:







lX

i=1

ai
qi






 � 1

q
1�(�=2)
1

)
� C(�)q

�=2
1 q2 : : : ql : (7.47)

From (7.47) and (7.44), it is easily deduced that the contribution of the ai's such that

kPl
i=1 ai=qik � 1=q

1�(�=2)
1 to the sum de�ning gq1;��� ;ql(A; �) is bounded by,

� C(�)q
�=2
1 q2 : : : ql : (7.48)
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Sixth step: the �nal upper bound on SA

Now, putting (7.42), (7.43), (7.45), and (7.48) together gives,���hSl
A(B)iA;�

���
� Cl

X
1�q1�����ql�A

q
2�(�=2)
1 q2 : : : ql
A1��q21 : : : q2l

+ C(�)l
X

1�q1�����ql�A

q
�=2
1 q2 : : : ql
q21 : : : q

2
l

� C(�)l
AX

q1=1

 
q
�(�=2)
1 (log q1)

l

A1�� + q
�2+(�=2)
1 (log q1)

l

!

� (C(�)l)l
 
A1�(�=2) (logA)l

A1�� + 1

!
� (C(�)l)l : (7.49)

Last step: conclusion
Putting estimates (7.32) and (7.49) together gives,

hSl
(B)iA;� �A!1 hSl

A(B)iA;� � (C(�)l)l :

This proves Lemma 5. 2
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