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Abstract

In this paper we study the energy spectrum of the Pauli-Fierz Hamiltonian gener-
ating the dynamics of nonrelativistic electrons bound to static nuclei and interacting
with the quantized radiation �eld. We show that, for su�ciently small values of the
elementary electric charge, and under weaker conditions than those required in [3], the
spectrum of this Hamiltonian is absolutely continuous, except possibly in small neigh-
bourhoods of the ground state energy and the ionization thresholds. In particular, it is
shown that (for a large range of energies) there are no stable excited eigenstates. The
method used to prove these results relies on the positivity of the commutator between
the Hamiltonian and a suitably modi�ed dilatation generator on photon Fock space.
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1 Introduction

In this paper we extend the method of positive commutators to a family of Hamiltonians

related to the Pauli-Fierz Hamiltonian describing nonrelativistic electrons bound to static

nuclei and interacting with the quantized electromagnetic �eld, subject to an ultraviolet cut-

o�. This is a standard Hamiltonian of quantum electrodynamics of nonrelativistic particles.

Let e and m be the electron charge and mass and � := e2

~c
, the �ne-structure constant. The

physical value of � is approximately 1
137

, however, in this paper it is considered as a small

dimensionless parameter. In dimensionless units in which the energy, photon wave vector,

particle coordinate, particle charge and particle mass are measured in units of mc2�2 , �me
2

~2
,

~
2

me2
, e(�3=2K)�1 and m , respectively (here K is an ultraviolet cut-o� de�ned below), the

Pauli-Fierz Hamiltonian for a system of N charged particles (typically electrons) is given

by

H(e) =
NX
j=1

1

2mj

�
pj � ejA(xj)

�2
+ V (x)
 1f + 1part 
Hf ; (1.1)

where e := (e1; : : : ; eN) , ej is the electric charge, mj the mass, xj the position (-operator),

and pj := �irj the momentum operator of the jth particle, for j = 1; : : : ; N ; moreover

x := (x1; : : : ; xN) . The operator K1=2A(y) is the quantized electromagnetic vector poten-

tial, cut-o� at large wave vectors, at the point y in physical space R3 . It is assumed to

satisfy the Coulomb gauge condition, (r � A)(y) = 0 . The operator V (x) originates in a

properly rescaled electrostatic (scalar) potential of the charged particles (electrons) in the

Coulomb �eld of static charges (nuclei) (see [2]). Finally, Hf is the usual Hamiltonian of

the noninteracting, quantized electromagnetic �eld. The operators A(y) , y 2 R3 , and Hf

are densely de�ned, self-adjoint operators on the usual Fock space, Hf , of the quantized

electromagnetic �eld (the photon Fock space), and V (x) is a multiplication operator on the

particle Hilbert space, Hpart , which is given by (a subspace of prescribed symmetry character

of) L2(R3N) , with R3N the con�guration space of the charged particles. The Hilbert space

of the entire system constisting of the charged particles and an arbitrary number of photons

is given by the tensor product space Hpart
Hf . One can prove without much di�culty (see,

e.g., [8, 9]) that H(e) is a densely de�ned, self-adoint operator on Hpart
Hf , whose energy

spectrum is bounded below by a �nite constant (depending on the positions of the nuclei

and their electric charges). A proof can be based, either on diamagnetic type inequalities or

on constructing the semigroup exp(�tH(e)) , for t � 0 , with the help of path-integrals.
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It should be noted that, for simplicity, we have set the magnetic moments of the charged

particles to zero. (Otherwise, the Hamiltonian H(e) would contain an additional term

describing the Zeeman energies of magnetic moments in the ultraviolet cut-o�, quantized

electromagnetic �eld. This term would complicate our analysis slightly.)

For jej := PN
j=1 jejj su�ciently small, we shall construct a suitable modi�cation of the

( 2nd -quantized) generator of dilatations on the photon Fock space, with the property that

its commutator with the Hamiltonian H(e) is positive, provided that we restrict the energy

to small neighbourhoods of the eigenvalues of the particle Hamiltonian,

Hpart =
NX
j=1

1

2mj
p2j + V (x) ; (1.2)

corresponding to excited states of the atom or molecule. This result has the following

implications: In the vicinity of the eigenvalues of Hpart corresponding to excited eigenstates,

- H(e) has no eigenvalues;
- the spectrum of H(e) is purely absolutely continuous;
- H(e) satis�es the limiting absorption principle.

Implication (i) is derived from the basic positive-commutator estimate via a virial the-

orem, while (ii) and (iii) follow from that estimate with the help of a slight extension of

Kato-Mourre theory presented in this paper. The limiting absorption principle represents

a �rst step towards analyzing properties of the time evolution of a quantum mechanical

system.

The results announced in the abstract follow from (i) and (ii) above, together with similar

(but simpler) results in Section IV of [3]. Results similar to (i) and (ii) above (but of

somewhat more detailed nature), were �rst obtained, under stronger hypotheses, in [2, 3, 4];

(see remarks after Theorem 3.1). If the quantized electromagnetic �eld is not only cut o� in

the ultraviolet, but also in the infrared (at small wave vectors), e.g., by introducing a small

photon mass, results similar to ours have previously been established in [22, 10, 12, 11].

Furthermore, in [12], commutator estimates were derived that inspired, in part, our �ndings.

Parallel results for su�ciently high temperatures (here the temperature leads to an e�ective

infrared cut-o�) were obtained in [15,16].

Commutator methods were introduced in [24, 18], further developed in [19] and turned

into a deep theory in [20]. In [20, 21, 23, 26] they were shown to yield a powerful tool

in analyzing spectral properties of Hamiltonians of quantum-mechanical systems and in
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studying their time evolution. The present paper is inspired by these earlier discoveries and

should be viewed as a step towards understanding the time evolution of systems of photons

interacting with nonrelativistic, quantum-mechanical matter.

2 The Hamiltonian of Nonrelativistic QED

As announced, we study systems of nonrelativistic, quantum-mechanical, charged particles

interacting with the quantized electromagnetic �eld, The dynamics of such systems is de-

scribed by the Hamiltonian H(e) introduced in (1.1). The potential energy V (x) is assumed

to satisfy standard Kato-type conditions speci�ed below. The Hamiltonian Hf of the non-

interacting, quantized electromagnetic �eld can be expressed in terms of standard photon

creation- and annihilation operators, a�(k) and a(k) , as follows:

Hf =
Z
!(k) a�(k) � a(k) d3k ; (2.1)

where ! = !(k) = jkj is the energy of a photon with wave vector k . The creation-

and annihilation operators a�(k) and a(k) are transverse, vector-valued, operator-valued

distributions on Hf satisfying k � a�(k) = k � a(k) = 0 and a(k)
 = 0 , for all k 2 R3 ,

where 
 is the vacuum (zero-photon) vector in Hf . Furthermore, these operators satisfy

the canonical commutation relations

[ a#i (k) ; a
#
j (k) ] = 0 ; [ ai(k) ; a

�
j(k) ] =

�
�ij �

kik
0
j

jkj2
�
�(k � k0) ; (2.2)

where a#i is the ith component of a# (in the plane perpendicular to k ), and a# = a or

a� .

The cut-o� electromagnetic vector potential A(y) , y 2 R
3 , is the densely de�ned self-

adjoint operator on Hf given by

A(y) =
Z �

e�iky 
 a�(k) + eiky 
 a(k)
� �(k)q

!(k)
d3k ; (2.3)

where � is a real function on R3 of rapid decrease, as jkj ! 1 . It describes the ultraviolet

cut-o� and is necessary for A(y) to be densely de�ned and self-adjoint, for every y 2 R3 .

We assume it lives on a scale K , i.e., it is of the form �(k) = K�1=2�0(k=K) , where �0 is a

�xed function. The particular form of �0 is irrelevant for our analysis. All that is required

are certain bounds on �0 and its derivatives.
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It is convenient to forget the origin of the vector potential A(y) and consider a slighty

generalized form of it given by

A(y) =
Z �

Gy(k)
 a�(k) + Gy(k)
 a(k)
�
d3k ; (2.4)

where the function Gx(k) is assumed to satisfy a variety of conditions (depending on the

problem we study), the most important one being

sup
x

(Z 1

!(k)
jGx(k)j2 d3k

)
< 1 : (2.5)

This condition guarantees that, for jej small enough, the operator H(e) is bounded below

and self-adjoint on the domain of H(e = 0) (see [5]).

We recall that we neglect the Zeeman term,

�X�i Si �B(xi) ; (2.6)

describing the interaction energy of the interaction energy of the magnetic moments �i Si ,

where Si is the spin operator of the ith particle, with the magnetic �eld B(y) = curlA(y) .

In order to simplify notation and exposition, we demonstrate our approach on the model

of a particle system interacting with a massless scalar �eld, instead of the vector potential.

The Hamiltonian for such a model is given by

H = Hpart 
 1f + 1part
Hf + gI ; (2.7)

acting on Hpart 
 F , where the Hilbert space Hpart is the same as before, F is the Fock

space of scalar �elds generated by L2(R3) , Hpart is given in (1.2) and is a particle (atomic)

Hamiltonian, acting on Hpart , and Hf is a scalar �eld Hamiltonian on F given, similarly

to (2.1), by

Hf =
Z
!(k) a�(k) a(k) d3k ; (2.8)

with ! = !(k) = jkj , as above. Finally, the interaction term I is de�ned by

I :=
Z �

Gx(k)
 a�(k) + Gx(k)
 a(k)
�
d3k

= a�(Gx) + a(Gx) ; (2.9)

where x = (x1; : : : ; xN) 2 R3N , and where Gx(k) is required to satisfy (2.5) (we use the

same notation for coupling functions as in the vector case). The operators a�(k) and a(k)



BFSS; Oct. 5, 1998 5

are creation- and annihilation operators of a scalar quantum �eld acting on F . They obey

the canonical commutation relations, [a#(k); a#(k0)] = 0 , [a(k); a�(k0)] = �(k � k0) , and

a(k)
 = 0 , for all k; k0 2 R
3 , where 
 is the vacuum vector in F . (For brevity we

continue to refer to the scalar �eld as photon �eld.) Note that for a scalar �eld the coupling

to matter cannot be \minimal", i.e., it cannot be described by replacing the momentum

operator by a covariant derivative.

The simpli�ed model contains all the di�culties of the vector model, but the infrared

problem becomes visible in its pure form, unencumbered by vector notation and other

inessential particulars. In (2.9), it is straightforward to also include terms quadratic in

a and a� . We do not pursue this in order not to muddle the key ideas underlying our

methods.

Throughout the paper, we assume that

Hpart = H�
part on the domain of

NP
j=1

1
2mj

p2j and has several isolated eigenvalues of �nite

multiplicity, E0; E1; : : : , below the bottom, � , of its essential spectrum:

E0 < E1 < � � � < �:

This assumption is satis�ed for a large class of potentials including many-body Coulomb

potentials (see e.g. [25]).

The Hamiltonian H(e) de�ned in (1.1) is self-adjoint under the above assumption on

the potential V (x) and under assumption (2.5) on the coupling function Gx . This is

proven by using diamagnetic-type inequalities or by considering the semigroup e�H(e)t . It

was shown in [3] that for jej = P jejj su�ciently small, it is self-adjoint on the domain

D(H(e)) = D(H(0)) . The self-adjointness of the Hamiltonian H , de�ned in (2.7){(2.9), on

the domain D(H) = D(H0) , for g su�ciently small, follows from a result of a result of [3]

(see Eqn (4.10) of Section 4).

In what follows, E�(H) stands for the spectral projection function of a self-adjoint

operator H associated with an interval � , while ��2
 , for the characteristic function of

a set 
 (thus E�(H) = �H2� ). Below, we make use of the following exponential decay

estimate proven in [3]: If � 2 C1
0 , with supp� �

�
�1;�� g2 sup

x

R jGxj2
!

�
, then

ke�jxj�(H)k � C� ; (2.10)

for � su�ciently small
�
� < � � sup supp� � g2 sup

x

R jGxj2
!

�
. Since the operators Hf and
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[H;x] are H -bounded, Eqn 2.10 implies that

khxiM 
 (Hf + 1)�(H)k <1 for any M � 0 : (2.11)

3 Results

First we formulate the restrictions on the coupling functions Gx = Gx(k) used in this paper:

sup
x

8><>:
Z jGx(k)j2

!(k)
d3k + hxi�M

Z ���(k � rk)Gx(k)
���2

!(k)
d3k

9>=>; <1: (3.1)

and

sup
x
hxi�M

2X
n=1

Z
(1 + !(k)�1)j(k � r)nGx(k)j2d3k <1 (3.2)

for some M � 0 .

In order to simplify somewhat the technical part of the paper we assume that

sup
x;k
hki2hxi�M j(k̂ � rk)

nGx(k)j <1 ; (3.3)

where k̂ = k � jkj�1 , for some M � 0 and for n = 0; 1 , and that

g(�) := sup
x

0B@ Z
!��

jGxj2
!

1CA
1=2

� C�1=2 : (3.4)

Let Ei and  ispart , s = 1; : : : ;mi , be the eigenvalues and corresponding eigenfunc-

tions of Hpart , where i = 0; 1; : : : , and E0 < E1 < : : : . For i; j � 0 , we assume

that
R
jkj=!(Aij)�AijdS! is continuous in ! and vanishes at ! = 0 . Here Aij are the

mi�mj matrices with the entries gh i`part; Gx 
jr
parti , in the case of the Hamiltonian H , and

h i`part;
NP
a=1

ea
ma
p?aGxa 

jr
parti , p? = p � (p � k̂)k̂ , with k̂ = k

jkj (the projection of p onto the

plane, k? , perpendicular to k ), in the case of the Hamiltonian H(e) , ` = 1; : : : ;mi and

r = 1; : : : ;mj , and dS! is the area element on the sphere fk 2 R3 j jkj = !g . For j � 1

(i.e., for excited states  jspart ), we de�ne the self-adjoint matrix �j by

�j =
X

i:Ei<Ej

Z
(Aij)

�Aij �(! � Eji) d3k; (3.5)

where Eji = Ej � Ei . The eigenvalues of this matrix are the resonance widths to second

order in the coupling constant, associated with the eigenvalue Ej , what is known in quantum
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mechanics as Fermi's Golden Rule. We assume that

�j = lim inf
j�j!0

(��2�j) > 0 ; (3.6)

where � = g in the case of the Hamiltonian H and jej = max
i
jeij , in the case of the

Hamiltonian H(e) .

The main result of this paper is the following theorem.

Theorem 3.1 Assume (3.1)-(3.4) and (3.6). Let j � 1 . Then for jej su�ciently small,

the spectrum of H(e) in any interval containing Ej , but not containing any other part of

the spectrum of Hpart , and whose distance to specHpart \ (�1; Ej) is � jej , is purely

absolutely continuous. Moreover, in such an interval, H(e) has the local decay property

(formulated below). A similar statement, but with jej replaced by g , holds for H .

The �rst statement of the theorem was proved in [2, 3, 4] under additional assumptions

of analyticity of Gx and
R
sup
x

jGxj2
!1+� <1 for some � > 0 , which is a stronger condition in

the infrared region, k ! 0 , than the one we require in this paper.

Next, we formulate the local decay property mentioned in Theorem 3.1. To this end, we

introduce the anti-self-adjoint operator

�A = 1part 
 1

2

Z
a�(k)

�
k � rk +rk � k

�
a(k) d3k : (3.7)

This operator is a second quantization of the generator of dilatations in the one-photon

momentum space, i.e., of 1
2
(k � rk + rk � k) . In what follows, whenever no danger of

confusion arises, we omit the trivial factors 1part
 and 
1f . We say that H has the local

decay property in a spectral interval � (with respect to an operator A ), if the following

estimate holds Z 1

�1

 hAi�� e�iHt 2 dt � C� k k2 ; (3.8)

for any � > 1=2 and any  2 Ran�H2� . (In fact, a slightly stronger property, the limiting

absorption principle with H�older constant � < � � 1
2 , holds in our case.)

Theorem 3.1 follows from a positive commutator estimate derived below (Theorem 5.2)

and from the Kato-Mourre theory mentioned in the introduction and expounded upon in

Section 5. We prove only the part of Theorem 3.1 concerning the operator H . The cor-

responding part for the operator H(e) , given in (1.1), is proven in exactly the same way,



BFSS; Oct. 5, 1998 8

using some simple additional estimates related to the quadratic part
P e2j

2mj
A(xj)2 of the

perturbation H(e)�H(0) .

We note that absolute continuity of the spectrum and the local decay property outside

of O(g2) - (resp. O(jej2) -) neighbourhoods of the eigenvalues and thresholds of Hpart has

been proven in [3].

Remark 3.2 The requirement that g is small is not completely satisfactory, since if we, re-

membering the origin of Gx in (2.3), take Gx(k) =
�(k)p
!(k)

e�ik�x and �(k) = K�1=2�0(k=K) ,

then

hxi�2
Z jk � rkGx(k)j2

!(k)
d3k = O(K2) (3.9)

for large K . However, the operator hxi�M=2k �rk in conditions (3.1){(3.2) on the coupling

function Gx(k) can be replaced by the operator k � rk � x � rx . This is done by replacing

in our analysis the key operator A , given in (3.7), by the operator

�A0 = 1part
 1

2

Z
a�(k)(k � rk +rk � k)a(k)d3k

�
h1
2
(x � rx +rx � x)
 1f

i
: (3.10)

Given standard additional conditions on V (x) (see e.g. [6, 13]), most of the analysis given

below goes without a change. The advantage of the modi�ed conditions on Gx is in the

fact that they do not require the ultraviolet cut-o� K to be small in the case of interest:

Gx(k) =
�(k)p
!(k)

e�ik�x with �(k) = K� 1

2�0(k=K) . Indeed, in this case, e.g.

sup
x

Z j(k � rk � x � rx)Gx(k)j2
!(k)

d3k = O(1) (3.11)

instead of (3.9). Moreover, if, abstracting properties of Gx(k) =
�(k)p
!(k)

e�ik�x , we assume

that Gx satis�es
1X

n=0

sup
x

Z j(k � rk � x � rx)nGx(k)j2
!(k)

d3k <1; (3.12)

instead of (3.1), and a corresponding relation replacing (3.2), then the analysis presented in

Section 5 below simpli�es considerably (see also Remark 5.7).

In what follows we absorb the paremeter g into the coupling function Gx(k) .
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4 Relative Bounds on the Interaction

In this section we collect some elementary bounds needed for the proof of Theorem 3.1. In

what follows, by H
�1=2
f we always understand H

�1=2
f P
 , where P
 is the projection onto

the orthogonal complement of the vacuum state 
 in Fock space.

Lemma 4.1 (Relative bounds)

ka(f) kFock �
 Z jf j2

!

!1=2 (Hf )
1=2 


Fock

(4.1)

and

ka�(f) k2Fock �
 Z jf j2

!

! (Hf )
1=2 

2
Fock

+
�Z

jf j2
�
k k2Fock : (4.2)

Proof: We drop the subindex \Fock" in the proof. By Schwarz' inequality we have

ka(f) k �
Z
jf(k)j ka(k) k �

 Z jf j2
!

!1=2 �Z
!(k) ka(k) k2

�1=2
: (4.3)

Thanks to Z
!(k) ka(k) k2 = h ; Hf i ; (4.4)

this implies (4.1). Inequality (4.2) follows from

a(f)a�(f) = a�(f)a(f) + hf; fi1 ; (4.5)

h ; a�(f)a(f) i = ka(f) k2 and (4.1).

We rewrite bound (4.1) as

a(f)H�1=2
f


Fock

�
 Z jf j2

!

!1=2

; (4.6)

H�1=2
f a�(f)


Fock

�
 Z jf j2

!

!1=2

: (4.7)

These two bounds are equivalent, since the expressions under the norm signs are adjoint to

each other. Moreover, (4.1) implies that

�ha�(f) + a(f)i � 2

 Z jf j2
!

!1=2 H1=2
f  

 � k k ; (4.8)

which yields

�
�
a�(f) + a(f)

�
� �Hf +

1

�

Z jf j2
!

; (4.9)
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for any � > 0 . Furthermore, inequalities (4.1) and (4.2) imply

 �a�(f) + a(f)
�
 
 � �Z

jf j2
�1=2

k k + 2

 Z jf j2
!

!1=2 H1=2
f  

 : (4.10)

Eqn. (4.9) implies that I is Hf form-bounded with relative bound zero, provided (2.5) holds,

while Eqn. (4.10) implies that I is H1=2
f -bounded with relative bound 2 supx

�R jGxj2
!

�1=2
,

provided (2.5) holds. The latter of these two statements implies that, if (2.5) is satis�ed,

then H is self-adjoint on the domain of Hf .

To develop more re�ned bounds we need Pull-through formulae (see [2, 3])

a(k)g(Hf ) = g(Hf + !(k))a(k) (4.11)

and

g(Hf )a
�(k) = a�(k)g(Hf + !); (4.12)

valid for any piecewise continuous and bounded function g . (These formulae follow from

the following commutation relation

a(k)Hf = (Hf + !(k))a(k) (4.13)

and its adjoint.)

Now if  = �Hf�� , then

ka(k) kFock = k�Hf+!(k)��a(k) kFock
� �!(k)��ka(k) kFock : (4.14)

Using this in (4.3) we obtain instead of (4.1) (or (4.6))

Z
jf(k)jka(k)�Hf��kFock �

0B@ Z
!��

jf j2
!

1CA
1=2

� �1=2 : (4.15)

These estimates can be extended to products of several annihilation or creation operators.

Namely, relation (4.11) and a property of characteristic functions imply that 
mY
1

a(kj)

!
�Hf�� =

mY
1

�
a(kj)�Hf��

�
: (4.16)

Applying estimate (4.15) to each factor on the r.h.s., we �nd

Z Y
 jfjjk(
mY
1

a(kj))�Hf��k �
mY
1

0B@ Z
!��

jfjj2
!

1CA
1=2

�m=2 (4.17)
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and similarly for certain operators:

Z Y
 jfjjk�Hf��(
mY
1

a(kj))k �
mY
1

0B@ Z
!��

jfjj2
!

1CA
1=2

�m=2 : (4.18)

5 Positive Commutators

In this section we formulate our key technical result. In the following, when we speak of

a communtator of two, in general unbounded, operators, H and A , we understand that

D(H) \ D(A) is dense, and [H;A] is de�ned �rst as a form on D(H) \ D(A) and then

extended to a bounded or unbounded operator.

We �x j � 1 once and for all. Let Ppart = P j
part be the orthogonal projection onto the

eigenspace of Hpart corresponding to the eigenvalue Ej . For a �xed energy scale � , we

de�ne the projection operator

P = Ppart 
 �Hf�� (5.1)

and P = 1� P . We de�ne a family of operators

AV = A + PV P � PV �P ; (5.2)

where A is the second quantized dilatation generator de�ned in (3.7), and

V = �R
2
"I ; R" = R"P ; (5.3)

for positive constants � and " to be chosen below, where

R" =
h
(H0 � Ej)2 + "2

i�1=2
: (5.4)

Note that "R2
" ! �(H0�Ej) , as "! 0 . We note also that AV depends on four parameters,

g , " , � and � .

Lemma 5.1 The commutator [H;AV ] can be de�ned as a quadratic form on the dense set

D(H0)\D(A) and can be extended from there to a (hxiM
Hf ) -bounded operator. Moreover,

for any � 2 C1
0 with supp � �

�
�1;�� sup

x

R jGxj2
!

�
the operator

�(H)[H;AV ] is bounded. (5.5)
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Proof: The �rst statement of the lemma follows from the relations D(H) = D(H0) and

D(AV ) = D(A) . The second of these two relations is due to the fact that the operator

AV �A is bounded.

To prove the second statement we observe that, by a direct computation, e�A , � 2 R ,

maps D(H) = D(H0) into itself and therefore, in a sense of quadratic forms,

[H;A] =
@

@�

���
�=0

H�; (5.6)

where H� = e��AHe�A . A direct computation (see Eqn (5.18) below) and Lemma 4.1 show

that the r.h.s. of this equality is a (hxiM 
Hf) -bounded operator. Hence [H;A] extends to

a (hxiM 
Hf ) -bounded operator. Furthermore, due to de�nition (5.1){(5.4), AV �A is a

bounded operator mapping H = Hpart
F into D(H) , so [H;AV �A] is well de�ned. As

can be easily shown, it is a bounded operator. Hence [H;AV ] extends to a (hxiM 
Hf ) -

bounded operator. Finally, the third statement follows from the second one and estimate

(2.11).

Observe that it is not hard to show that the operator [H;AV ] is self-adjoint. Hence

taking adjoints in (5.5) once concludes that also the operator

[H;AV ]�(H) is bounded. (5.7)

Let � be an energy interval containing Ej but no other parts of the spectrum of Hpart ,

and let

�1 = inf � � sup
n
�(Hpart) \ (�1; inf �)

o
> 0 ; (5.8)

i.e., the distance, �1 , of inf � to the part of the spectrum of Hpart below � is assumed to

be positive. The key technical result of this paper is

Theorem 5.2 Assume that Conditions (3.1)-(3.4) and (3.6) hold, and let, for simplicity, the

parameters " , � , and � in (5.1){(5.4) satisfy the inequalities " � � � �1 and " � � . If j

is the smallest eigenvalue of �j and � = O
�
"��1 + �"��2 + ��11 ��2"�2 + �g2"�2��1 + g

�
+

o"(1) , then

E�(H) [H;AV ] E�(H) � �(2 � �) j
"

E�(H)2 : (5.9)

(Here o"(1)! 0 , as "! 0 , and �j is the matrix introduced in (3.5).)

This theorem is proven in Section 7.
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Since g � �1 , we can pick the parameters " , � and � in (5.1){(5.4) satisfying the

inequalities s
�

�1
�� "� � ; �"� �2 � �21 ; (5.10)

and

g � ��1=2"�1=2 : (5.11)

Then the parameter � in (5.9) is much smaller than 1 and therefore the r.h.s. is strictly

positive on RanE�(H) . In what follows we assume that conditions (5.10){(5.11) are satis-

�ed.

Before proceeding any further we derive the most important consequence of this

theorem|the instability of the eigenvalue Ej .

Theorem 5.3 (Virial theorem) Let the conditions of Theorem 5.2 be satis�ed. If  is an

eigenfunction of the operator H with an eigenvalue E < � � sup
x

R jGx j2
!

, then  is in the

domain of [H;AV ] and

h ; [H;AV ] i = 0: (5.12)

Consequently, in view of Theorem 5.2, H has no eigenvalues in any interval � containing

only one eigenvalue of Hpart and satisfying �1 � g2 with �1 de�ned in (5.8).

Proof: Let g1 2 C1
0 (R) , be real, be supported in ( � 1;

P� sup
x

R jGxj2
!

) and satisfy

g1(E) = 1 . Then g1(H) =  , so (5.12) is equivalent to the relation

h ; [g(H); AV ] i = 0 ; (5.13)

where g(�) := (��E)g1(�) . Note g(H) = 0 . Since we do not know whether  2 D(AV ) ,

we must understand the commutator on the l.h.s. of (5.13) as an operator resulting once the

commutation is performed. Now we claim that

[A; g(H)] is bounded : (5.14)

Indeed, let �g 2 C1
0 be s.t. �gg = g and supp�g �

�
�1;�� sup

x

R jGxj2
!

�
. The proof of

(5.14) will follow from the following formula

[A; g(H)] =
Z
d~g(z)(z �H)�1[A;H]�g(H)(z �H)�1

+
Z
d~�g(z)(z �H)�1g(H)[A;H](z �H)�1 ; (5.15)
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understood in the sense of quadratic forms on D(A) . Here we use the notation and de�ni-

tions of Appendix B of [14]. Indeed, the l.h.s. is de�ned as a quadratic form on D(A) by

h ; [A; g(H)] i = 2Rehg(H) ;A i , while the r.h.s. represents a bounded operator in virtue

of (5.5) and (5.7) and with V = 0 and estimates (B.6) of [14] on ~g and ~�g .

Thus it su�ces to prove the representation above. To this end we use the formula

@�j�=0h ; e��Ag(H)e�A i = @�j�=0h ; e��Ag(H)e�A�g(H) i

+@�j�=0h ; g(H)e��A�g(H)e�A i : (5.16)

It su�ces to consider one of the terms on the r.h.s., say the �rst one. To this end we use the

Hel�er-Sj�ostrand formula

g(H) =
Z
d~g(z)(z �H)�1

(see [14]) to obtain

@�j�=0h ; e��Ag(H)e�A�g(H) i = @�j�=0
Z
d~g(z)h ; (z �H�)

�1�g(H) i ; (5.17)

where, recall, H� = e��AHe�A and is given by an explicit formula

H� = Hpart 
 1f + 1part 
 e��Hf + I�

with I� = a�(Gx;�) + a(Gx;�) , Gx;�(k) = e�
3�
2 Gx(e��k) .

It is not di�cult to see that the operator function (z �H�)�1�g(H) is di�erentiable in �

at � = 0 : due to (5.7) with V = 0 ,

1

�
[(z �H�)

�1 � (z �H)�1]�g(H) = (z �H�)
�11
�
(H� �H)�g(H)(z �H)�1

! (z �H)�1[H;A]�g(H)(z �H)�1

as �! 0 , in the operator norm. Taking this into account and taking the � -derivative under

the sign of integral in (5.17) we arrive at

@�j�=0h ; e��Ag(H)e�A�g(H) i =
Z
d~g(z)h ; (z �H)�1[A;H]�g(H)(z �H)�1 i :

The last equation together with a similar equation for the second term in (5.16) yields (5.15).

As was already mentioned Eqn (5.15) together with Eqns (5.5) and (5.7) for V = 0 yields

(5.14).

Eqn (5.14) implies that [AV ; g(H)] is also bounded.
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In order to write the l.h.s. of (5.13) as a quadratic form, which is what we ultimately

need for the proof, we proceed in a standard way by approximating it as follows

h ; [g(H); AV ] i = lim
�"1

h �; [g(H); AV ] �i;

where  � = R� , R� = i�(i� + A)�1 . (Note that  � !  as � ! 1 .) Since  � 2
D(A) = D(AV ) we can write

h �; [g(H); AV ] �i = 2Rehg(H) �; AV �i:

Since g(H) = 0 and [g(H); R�] = i�(i�+A)�1[A; g(H)](i�+A)�1 (in a sense of quadratic

forms), we have

g(H) � = R�[A; g(H)](i�+A)�1 :

Hence, since (5.14), kR�k � 1 and k(i�+A)�1 k � 1
�
k k , we have

kg(H) �k � 1

�
k[A; g(H)]kk k:

Consequently,

h �; [g(H); AV ] �i ! 0

as �!1 , so (5.12) follows.

To deduce the statements of Theorem 3.1, about absolute continuity and local decay,

from Theorem 5.2, we use an abstract Kato-Mourre theory. A standard variant of this

theory (see, e.g., [1, 6, 13, 20, 23]) requires H -boundedness of the commutators [AV ;H]

and
h
AV ; [AV ;H]

i
. In our case, these commutators are not H -bounded for two reasons.

First, under Condition (3.1), [A;H] and
h
A; [A;H]

i
are H -bounded only for M =

0 , where M is the exponent appearing in (3.1). This follows from the straightforward

computation (justi�ed in the proof of Lemma 5.5 below)

adnA(H) = Hf + a�((k � rk +
3

2
)nGx) + a((k � rk +

3

2
)nGx) ; (5.18)

where we used the standard notation adA(H) = [H;A] (see, however, Remarks 3.2 and 5.7).

The second reason is that the second part of the operator AV (see Eqns (5.2){(5.4))

contains the projection �Hf�� , entering in the de�nition of P , and this operator, not being

di�erentiable in Hf , has a very singular commutator with the dilatation generator A (or

any other operator not commuting with Hf ).
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To remedy the �rst problem, we weaken the conditions used in Mourre theory (see Lem-

mata 5.5 and 5.6 below).

We go around the second problem by replacing AV by a smooth version, as follows. In

de�nition (5.2){(5.4) of the operator AV , we replace the projection P by the projection

Ps , where

Ps = Ppart 
 �Hf�s� : (5.19)

Thus, we just vary the photon energy scale a little. Denote the resulting operator by AV;s .

Let � be a non-negative function supported in the interval [1; 2] and satisfying
R
� = 1 .

De�ne

A
(av)
V :=

Z
�(s) AV;s ds : (5.20)

The next two lemmas establish the desired properties of A
(av)
V .

Lemma 5.4 Theorem 5.2 holds if we replace AV by A
(av)
V .

Proof: Inequalities (5.10){(5.11) still hold true if we replace � by s� with 1 � s � 2 . Hence

(5.9) holds after AV is replaced by AV;s , for 1 � s � 2 . Since � � 0 and
R
� = 1 , this

implies (5.9) with AV replaced by A
(av)
V .

Lemma 5.5 Let � 2 C1
0 and supp� �

�
�1;��sup

x

R jGxj2
!

�
, where � = inf �cont(Hpart) .

Then the operators [A
(av)
V ;H]�(H) and [A

(av)
V ; [A

(av)
V ;H]]�(H) are bounded.

Proof: The boundedness of the �rst commutator follows from Lemma 5.1 (see also the

sentence after Eqn (5.23)). To show the boundedness of the second commutator we write

A
(av)
V = A+Q , where

Q :=
Z
(P sV Ps � PsV

�P s)�(s)ds : (5.21)

We consider �rst the operator A and make sense of the formal computation (5.18). The

case n = 1 was justi�ed in the proof of Lemma 5.1. So we consider the case n = 2 . Due to

(5.14)

�(H) : D(A)! D(A): (5.22)

Hence, due to (5.7), the commutator [[H;A]; A] is de�ned as a quadratic form on �(H)D(A) .

The fact that e�A , � 2 R , preserves D(H) = D(H0) and a simple computation shows that

d2

d�2

�����
�=0

H� = [[H;A]; A];
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where, recall, H� := e��AHe�A , in a sense of quadratic forms. The l.h.s. of this equality

can be evaluated explicitly: it is exactly the r.h.s. of (5.18). Applying Eqn. (4.10), with

f := hxi�M (k � rk +
3
2
)nGx , to (5.18) and observing that Condition (3.1) guarantees that

supx(kfk + k!�1=2fk) is �nite, we conclude that the operators adnA(H)hxi�M are Hf -

bounded for n = 1; 2 . Hence, due to Eqn. (2.10),

adnA(H)�(H) are bounded for n = 1; 2 . (5.23)

(Again, Q is a bounded operator, and Eqns. (5.2){(5.4) show that so are the operators

H �Q and Q �H . Hence [A
(av)
V ;H]�(H) is bounded as was also shown above.)

Now we write

h
[H;A(av)

V ]; A(av)
V

i
=

h
[H;A]; A

i
+
h
[H;A]; Q

i
+
h
[H;Q]; A

i
+
h
[H;Q]; Q

i
: (5.24)

By Eqn (5.23) and since Q and [H;Q] are bounded, the �rst two terms and the last term

on the r.h.s. of (5.24), multiplied by �(H) on both sides, are bounded.

It remains to show that
h
[H;Q]; A

i
, the third term on the r.h.s. of (5.24), times �(H) ,

is bounded. To this end, we want to use the Jacobi identity and rewrite this term as

h
[Q ; H] ; A

i
=

h
[A ; Q] ; H

i
+
h
Q ; [A ; H]

i
: (5.25)

To demonstrate this identity we prove it �rst for A replaced by the bounded operator

A� := A � i�(i� + A)�1 and then take the limit � ! 1 for the quadratic forms. Now we

demonstrate that [A ; Q] and H � [A;Q] are bounded. We write

[A ; Q] = �(S + S�) ;

where

S =
�
A ;

Z
�(s) P sR

2
"IPs

�
:

We present S in the form

S =
d

d�

Z
�(s) e�A P sR

2
" I Ps e

��A ds
����
�=0

=
d

d�

Z
�(s) P se�� R2

";� I� Pse�� ds

����
�=0

;
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where R";� = e�AR"e
��A , etc., and where we have used that e�AHfe

��A = e�Hf . Therefore

e�A Ps e
��A = Pse�� :

Next, using Leibnitz' rule, we rewrite this relation as

S =
Z
�(s) P s [A;R

2
"]P s I Ps ds +

Z
�(s) P sR

2
" [A; I]Ps ds

+
Z
�(s)

d

d�

�
P se�� R2

" I Pse��

�
ds

����
�=0

:

Since [A;H0] and [A; I]hxi�M are Hf -bounded, the �rst two terms on the r.h.s. are

bounded. The last term on the r.h.s. can be rewritten as

�
Z
s �(s)

d

ds

�
P sR

2
" I Ps

�
ds =

Z
d(s �(s))

ds
P sR

2
" I Ps ds ;

which shows that it is bounded, as well. Thus we proved that [A;Q] is bounded. Using

the above analysis and Eqns. (4.1) and (4.2), one shows that H � [A;Q] is bounded as

well. Consequently, [[A;Q];H] is bounded. Next, since [A;H] is (hxiM 
 Hf ) -bounded

and Q(Hf + i) is bounded, remembering Eqn (2.10) and commuting hxi�M through Q , if

necessary, we conclude that [Q; [A;H]] is bounded. Thus by identity (5.25), the boundedness

of [[Q;H]; A] follows, which completes the proof of the lemma.

In the next lemma, we slightly weaken the standard hypotheses of Mourre theory (see,

e.g., [1, 6, 13, 20, 23]), in order to accommodate our situation (see Lemma 5.5).

Lemma 5.6 Let H and iA be two self-adjoint operators, de�ned on the same Hilbert space,

and let � b �0 �� R be intervals such that for any real � 2 C1
0 (�0) , the operators [H;A]

and [[H;A]; A] , de�ned originally as quadratic forms on the domains D(H) \ D(A) and

�(H)D(A) , extend to unbounded operators satisfying

[H;A]�(H) and �(H)[[H;A]; A]�(H) are bounded, (5.26)

�(H)[H;A]�(H) � ��(H)2, for some � > 0. (5.27)

Then the spectrum of H in � is absolutely continuous and H has the local decay property

in � with respect to the operator A .

The proof of this lemma follows, by now standard, arguments of [20, 23, 6]. For the

reader's convenience it is given in Appendix A. (For a di�erent proof see [15].)
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Proof of Theorem 3.1: By Lemma 5.4, we have a positive commutator estimate as in

(5.9), but with A
(av)
V replacing AV ,

E�(H) [H;A(av)
V ]E�(H) � �(2� �) j

"
E�(H)2 ; (5.28)

and by Lemma 5.5, we know that, for any � 2 C1
0 with supp� �

�
�1;��sup

x

R jGxj2
!

�
, the

operators [A
(av)
V ;H]�(H) and [A

(av)
V ; [A

(av)
V ;H]]�(H) are bounded. Thus Lemma 5.6 implies

that the spectrum of H in � is absolutely continuous and that the local decay property

holds w.r.t. A
(av)
V . To pass to the local decay property w.r.t. the operator A , it su�ces to

observe that, due to (4.10), Q is a bounded operator and therefore hAi�� � hA(av)
V i� � const ,

for � > 0 .

Remark 5.7 The arguments presented above can be simpli�ed if we use, from the beginning,

the operator (3.10) instead of (3.7). Indeed, under assumptions which generalize the case of

interest | Gx(k) = g �(k)p
!(k)

e�ik�x | (see Remark 3.2), the coupling functions arising in the

commutators [H;A0] and [[H;A0]; A0] do not grow in x and therefore do not require �(H)

for bounding them.

6 Positivity of the Truncated Commutator

Before tackling the proof of Theorem 5.2 head on, we go part of the way by proving the

positivity of a simpler commutator. Namely, let

B0;� = P� B0 P� ; (6.1)

where

B0 = [H ; A ] (6.2)

and

P� = P E�(H0) : (6.3)

Recall that � is an energy interval containing Ej but disjoint from the rest of the spectrum

of Hpart . The main result of this section is the following lemma.

Lemma 6.1 Assume g2 � � � �1 . Then

B0;� � 1

2
Hf P� � 1

2
� P� ; (6.4)
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and, if in addition 3jzj � � , then

 jB0;� � zj�1=2 P�  
 � 2

H�1=2
f P�  

 ; (6.5)

where jAj := p
A�A , for a closed operator A .

Proof: We begin with a computation. For B0 as in (6.2), we have by (5.15) with n = 1

B0 = Hf + eI ; (6.6)

where eI = a�( eGx) + a( eGx) , and

eGx(k) := k � rkGx(k) +
3

2
Gx(k) : (6.7)

Inequality (4.9) with � = 1=4 and f = eGx yields

� eI � 1

4
Hf + 4

Z j eGxj2
!

(6.8)

which implies

B0 � 3

4
Hf � 4

Z j eGxj2
!

: (6.9)

Since Hf � 0 , inequality (2.10) implies that

 hxiM E�(H0)
 � CM ; (6.10)

for any M <1 , provided sup � < inf cont specHpart�sup
x

R jGxj2
!

. The last two inequalities

imply that

B0;� �
�
3

4
Hf � Cg2

�
P� : (6.11)

Next, de�nition (5.1) yields that

P = P part 
 1 + Ppart 
 �Hf�� : (6.12)

Since, by energy conservation,

P part E�(H0) =
X

i:Ei<Ej

P i
part E�(Hf + Ei) ; (6.13)

we have that

Hf P partE�(H0) � �1 P partE�(H0) ; (6.14)
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where �1 is given in (5.8). This yields

Hf P� � min(�1; �)P� = �P� ; (6.15)

which, together with (6.11) and the condition g2 � � , implies (6.4).

The proof of (6.5) is based on the following identity,�
B0;� � z

��1
= H

�1=2
f

�
1+K

��1
H
�1=2
f ; (6.16)

where

K = H
�1=2
f P� ( eI � z)P�H

�1=2
f : (6.17)

It su�ces to prove that for g2 � � ,

kKk � 1

2
; (6.18)

which would imply (6.5). To prove the latter inequality, we write K = K0 +K1 , where

K0 = �z H�1
f P

2
� (6.19)

and

K1 = H
�1=2
f P�

eI P�H
�1=2
f : (6.20)

Since jzj � �=3 , we have that kK0k � 1=3 , due to (6.4). Next, using (6.7), inequality (4.6)

with f = eGx , and inequality (6.10) again, we arrive at

K1 = H
�1=2
f P�O(g) + O(g)P�H

�1=2
f ; (6.21)

which, together with (6.15), yields that kK1k = O(��1=2g) . Since g2 � � and since

kK0k � 1=3 , this implies (6.18) which in turn yields (6.5).

Now we boost this proposition to a more complicated result. Let

BV := [H ; AV ] and BV;� := P� BV P� : (6.22)

Lemma 6.2 Assume g2 � � � �1 and g � "3=4�1=2 . Then

BV;� � 1

2
Hf P� � 1

2
� P� ; (6.23)

and, if in addition 3jzj � � , then jBV;� � zj�1=2 P�  
 � 2

H�1=2
f P�  

 : (6.24)
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Proof: By the de�nition of AV , we have

BV;� = B0;� � E ; (6.25)

where, since P�P = PP� = 0 ,

E = �P�

h
I ; PV P � PV �P

i
P�

= P� I P V
�P� + h:c:

= � P� I P I R
2
" P� + h:c: : (6.26)

We claim that

kEk � C�g2 "�3=2 : (6.27)

Indeed, since I = a�(Gx) + a(Gx) , estimates (4.6) and (4.7) imply that

kP�IPk � Cg : (6.28)

It remains to estimate the operator PIR
2
" . It is shown in Lemma 6.4 below that kPIR"k �

cg"�1=2 . The last two estimates and the inequality kR"k � "�1 imply (6.27). The latter

estimate together with (6.25) and (6.4) implies (6.23). Eqn. (6.24) is proven similarly to

(6.5).

Remark 6.3 It su�ces to prove an appropriate Hf -form bound on E , rather than the

norm bound, Eqn (6.27). The former bound would improve our �nal estimates.

Lemma 6.4 We have

kPIR"k � Cg"�1=2 : (6.29)

Proof: We write

(R"IP )
�(R"IP ) = PIR

2
"IP (6.30)

Next, we analyze the operator IR
2
"I restricted to Ran�Hf�� . To this end we need the

Pull-through formulae (see (4.11) - (4.12))

a(k)R" = R";!(k) a(k) ; (6.31)

R" a
�(k) = a�(k)R";!(k) ; (6.32)

where

R";! = R"jHf!Hf+"
: (6.33)
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Recalling (2.9) and pulling, in IR
2
"I =

�
a�(Gx) + a(Gx)

�
R

2
"

�
a�(Gx) + a(Gx)

�
, the a 's

to the right and the a� 's to the left with the help of the Pull-through formulae (6.31) and

(6.32), we obtain

I R
2
" I = M + L ; (6.34)

where

M =
Z
Gx(k)R

2
";!(k)Gx(k) d

3k (6.35)

and, with !i = !(ki) ,

L = a�(Gx)R
2
" a(Gx) +

Z Z
Gx(k1) a

�(k2)R
2
";!1+!2

a(k1)Gx(k2)d
3k1d

3k2

+
Z
Gx(k)R

2
";!(k) a(k) a(Gx)d

3k + adjoint : (6.36)

Using that kR";!k � "�1 , we estimate the latter operator by �Hf�� L �Hf��
 � 2"�2

Z Z
jGx(k1)Gx(k2)j ka(k1)a(k2)�Hf��k

+2
�
"�1

Z
jGx(k)j ka(k)�Hf��k

�2
: (6.37)

Applying inequalities (4.17) and (4.18) to the r.h.s., we arrive at �Hf�� L �Hf��
 � 4"�2�g(�)2 ; (6.38)

where, recall, g(�) := sup
x

 R
!��

jGxj2
!

!1=2

. Since by our restrictions g(�) � Cg
p
� , this in

turn yields that, on Ran�Hf�� ,

I R
2
" I = M + O("�2g2�2) : (6.39)

Now it is not hard to convince oneself that

kMk � Cg2"�1 : (6.40)

Indeed, remembering expression (6.12) for P , one can represent M as a sum of terms of

the form 1Z
0

fi(!)d!

(! +Hf �Eji)2 + "2
;

where fi(!) are bounded by Cg2 (in fact, decaying at 1 ), continuous functions. Instituting

the change of variable as ! ! � = "�1(! +Hf � Eji) , one shows easily that each integral

is bounded by Cg2"�1 .

Estimates (6.30), (6.39) and (6.40) and the condition �2 � " imply (6.29).
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7 Proof of Theorem 5.2

First we estimate from below the following operator

BV;� := E�(H0) [H ; AV ]E�(H0): (7.1)

Using the de�nition of AV (see Eqn. (5.2)), we write BV;� as

BV;� = BV;� + P� C
� P� + P� C P� + P� F P� ; (7.2)

where, in accordance with (5.2), (6.2), (6.3) and (6.22),

P� = P E�(H0) ; (7.3)

C = [H � Ej ; V ] + B0 ; (7.4)

F = B0 + V � P I + I P V : (7.5)

Here we used that, in virtue of the de�nition of V , we may identify V � PV P .

The key to the proof is the following inequality which follows from an application of the

Feshbach projection method (a derivation is given in Appendix B):

�0 � inf spec
n
E � RanP�

o
; (7.6)

where

�0 = inf spec
n
BV;� � RanE�(H0)

o
(7.7)

and

E = F � C� �BV;� � �0
��1

C : (7.8)

We may assume here that 3�0 � � ; otherwise Theorem 5.2 follows readily from conditions

(5.10){(5.11) on the parameters. With this assumption, Lemma 6.2 is applicable and yields

that
�
BV;� � �0

��1
is bounded on RanP� . Hence (7.8) is well-de�ned.

Our task is to estimate E on RanP� from below. The �rst term on the r.h.s. of (7.8)

can be easily analyzed. Due to (5.3),

V � P I + I P V = 2� I R
2
" I : (7.9)

Next, Eqns. (6.6){(6.10) imply that

P� B0 P� �
�
3

4
Hf � Cg2

�
P� � �Cg2P� : (7.10)
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Hence, on RanP�

F � 2� I R
2
" I � Cg2 : (7.11)

Next, we estimate from above the operator

G := C� �BV;� � �0
��1

C ; (7.12)

on RanP� . A large part of the remainder of this section is devoted to this estimate.

As mentioned after Eqn. (7.8), Lemma 6.2 is applicable to (7.12). It yields

j hG i j � 2
H�1=2

f P� C  
2 : (7.13)

From now on, we assume that  2 RanP , which implies that P� = 0 . This relation, the

de�nition of C (Eqn. (7.4)), and Eqn. (6.6) imply that

H�1=2
f P� C  

 �
H�1=2

f P�
eI   +

H�1=2
f P� [H � Ej ; V ] 

 ; (7.14)

where V = PV P = � R
2
"IP . To estimate the �rst term on the r.h.s. of (7.14), we use thateI = a�( eGx) + a( eGx) (see Eqn. (6.7)) and Eqns. (6.3) and (6.4), to obtain

H�1=2
f P�

eI   �
 hxiM E�(H0)

 � �hxi�MH�1=2
f a�( eGx)

 � k k (7.15)

+ ��1=2
hxi�M a( eGx)H

�1=2
f

H1=2
f  

� :
Since

hxiME�(H0)
 � CM and

H1=2
f  

 is bounded by �1=2k k , we obtain from (4.6)-

(4.7) that H�1=2
f P�

eI  � C gk k : (7.16)

It remains to estimate the second term on the r.h.s. of (7.14). Using the properties of

P , P� , and H � Ej = (H0 � Ej) + I , we obtain that

H
�1=2
f P� [H � Ej ; V ]P = �

4X
1

Ai (7.17)

where

A1 := H
�1=2
f P�(H0 � Ej)R

2
"IP ; (7.18)

A2 := �H�1=2
f P�R

2
"IPHf ; (7.19)

A3 := �H�1=2
f P�R

2
"IPIP (7.20)

and
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A4 := H
�1=2
f P�IR

2
"IP : (7.21)

To estimate the �rst of these terms we use the expression P� (Eqns (6.3) and (6.12)) and

the estimate k(H0 � Ej)R"k � 1 to obtain

kA1k � kH�1=2
f E�(H0)P partk � kR"IPk

+ kPpart 
 �Hf��R"k � kH�1=2
f IPk :

Now we use that, due to (4.6){(4.7), kPIPk � 2g , kPHfk � � ,

H�1=2
f �Hf�� I P

 �
H�1=2

f a�(Gx)
 + ��1=2

a(Gx)P
 � 2 g (7.22)

use inequality (6.29) and use the fact that Hf � �1 on Ran(E�(H0)P part) to obtain

kA1k � C�
�1=2
1 "�1=2g + 2��1g (7.23)

Similarly we have

kA2k � C�
�1=2
1 "�3=2g� + 2��1g (7.24)

Next using the estimates kH�1=2
f P�k � 2��1=2 (see (6.15)), kR"k � "�1 , (6.29) and

kPIPk � g
p
� , we �nd

kA3k � "�3=2g2 :

Now taking into account expressions (6.3) and (6.12) for P� , we estimate kP�H
�1=2
f k �

C��1=2 . Next, using (4.6) and (4.7) we �nd

kP�H
�1=2
f IR"k � kH�1=2

f a�(Gx)kkR"k
+ kP�H

�1=2
f kka(Gx)R"k

� C(g � "�1 + ��1=2g"�1) :

Finally using (6.29), we obtain

kA4k � C��1=2"�3=2g2 : (7.25)

Collecting the estimates above and remembering (7.17) and remembering that " � � , we

�nd

kH�1=2
f P�[H �Ej ; V ]Pk � C�g(��1 + �

�1=2
1 �"�3=2 + ��1=2"�3=2g) : (7.26)



BFSS; Oct. 5, 1998 27

This together with (7.13), (7.14) and (7.16) gives

G � �Cg2(1 + �2��2 + ��11 �2�2"�3 + �2��1"�3g2) : (7.27)

Finally, combining the last inequalities with (7.8), (7.11) and (7.24) yields on RanP�

E � 2�IR
2
"I � Cg2(1 + �2��2 + ��11 �2�2"�3 + �2g2"�3��1) : (7.28)

This estimate together with (6.39) implies that on RanP

E � 2�M � Cg2(1 + �2��2 + �2�2"�3 + �2g2"�3��1 + �"�2��2) : (7.29)

Now we analyze the operator PMP . Introducing

P
(�j)
part :=

X
i:Ei�Ej

P i
part and P

(>j)
part := 1part � P

(�j)
part ; (7.30)

and noting that (Hpart � Ej)P (>j)
part � �P

(>j)
part , for some � > 0 , we estimatePMP � P

� Z
Gx(k)P

(�j)
part R

2
";!(k)Gx(k) d

3k
�
P

 � Cg2 : (7.31)

This relation can be rewritten as

PMP =
X

i:Ei�Ej

Z
fij(!)

h
(Hf + ! � Eji)2 + "2

i�1
d!P + O(g2) ; (7.32)

where Eji := Ej � Ei and fij(!) =
R

jkj=!
(Aij)�AijdS! with the matrices Aij de�ned in

the paragraph preceeding Eqn (3.5). Now using the change of the variables formula and the

mean value theorem we �nd Z
fij(!)[(Hf + ! � Eji)2 + "2]d!

=
Z
fij(� �Hf )[(��Eji)2 + "2]d�

=
Z
fij(�)[(� �Eji)2 + "2]�1d� +R ;

where

R =
Z 1

0

Z
f 0ij(�� sHf )[(�� Eji)2 + "2]�1d�dsHf :

Since the functions fij have, by the assumptions on Gx(k) , bounded derivatives, we obtain

that

RP = O

 
g2�

"

!
: (7.33)
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Using this together with Eqn (7.32) and with the fact that fij(!) vanish at ! = 0 and

remembering the de�nition of �i (see Eqn (3.5)) yields on RanP

M =
�j
"
�
h
1 + o"(1) +O(�)

i
+O(g2) ; (7.34)

where o"(1) stands for a function of " vanishing as "! 0 .

Eqn (7.34) inserted into (7.29) yields

E � ��j
"
[2 � o"(1) �O(�)]�O(g2)[1 + �2��2 + ��11 �2�2"�3 + �2g2"�3��1 + �"�2�2] : (7.35)

Since �j � �jg
2 with �j positive and independent of g and since � � " , we may write

(7.35) on RanP� as

E � � �j (2� �1)

"
; (7.36)

where

�1 = O
�
"

�
+
�"

�2
+
��2

"2�1
+
�g2

�"2
+
�2

"

�
+ o"(1) < 2 : (7.37)

This together with (7.6){(7.8) (see also the paragraph after Eqn. (7.8)) implies

BV;� � � j (2� �1)

"
E�(H0)

2 ; (7.38)

where, we recall, j is the smallest eigenvalue of �j .

Now we derive (5.9) from (7.38). Let � �� �0 and pick a smooth function h supported

in �0 and equal to 1 on � . Moreover, we denote E�(�) = 1�E�(�) . We use the estimate �h(H) � h(H0)
�
(H0 + i)1=2

 � C g=j�j ; (7.39)

which can be easily derived using operator calculus (see, e.g., [14]) and (4.6){(4.7). Recalling

that BV;� = E�(H0)BV E�(H0) and BV = [H;AV ] , we may write

E�(H)BV E�(H) = E�(H)BV;�0E�(H) + S + T ; (7.40)

where

S = E�(H)E�0(H0)BV E�0(H0)E�(H) + adjoint ;

and

T = E�(H)E�0(H0)BV E�0(H0)E�(H) :

Writing E�(H)E�0(H0) as E�(H)(h(H)�h(H0))�E�0(H0) and using Eqn (7.39) we obtain

E�(H)E�0(H0) = E�(H)O(g) (�)
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and similarly for the adjoint operator. The latter estimate implies that

T = E�(H)O(g2)E�(H): (7:41)

Next, we write

BV = [H0; A] + U;

where U := [H0; PV P�PV �P ]+[I;AV ] and use that [H0; A] = Hf and therefore commutes

with E�0(H0) so that

S = E�(H)E�0(H0)UE�0(H0)E�(H) + h.c. :

Again Eqns (6.29) and (�) , together with elementary estimates similar to those performed

above imply that

S = E�(H)O(�"�3=2g2�)E�(H) : (7:42)

Combining estimates (7.40){(7.42), we obtain

E�(H)BVE�(H) � E�(H)(BV;� � C�"�3=2g2�)E�(H) :

Now using inequalities (7.38) and (7.39) we arrive at

E�(H)BVE�(H) �
h�j(2� �1)

"
(1�O(g)) � C�"�3=2g2�

i
E�(H)2 :

It is not hard now to identify this inequality with (5.19).

A Proof of Lemma 5.6

Both statements of Lemma 5.6 follow in a standard way (see [25], Theorems XIII.23 and

XIII.25) from the following result (cf. Theorem 4.9 of [6] and Theorem 7.1 of [23]).

Theorem A.1 Under the assumptions of Lemma 5.6

khAi��(H � z)�1hAi��k � C (A.1)

uniformly in z 2 C + with Re z 2 � , provided � > 1
2 .

Proof: Here we prove this theorem for � = 1 . Its extension to the case of � > 1
2
is done

by repeating the proof of Theorem 7.8 of [23].
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Our proof follows closely the proofs of Theorem 4.9 of [6] and Theorem 7.1 of [23]. Let

� �� �1 �� �2 �� �0 and f 2 C1
0 (�2) , with f � 1 on �1 and f � 0 . We use the

following notation,

M := f(H)[A;H]f(H): (A.2)

Note that due to (5.27), M � �f(H)2 and M� =M . Since k(H�i"M�z)uk � Imh(�H+

i"M+z)u; ui=kuk � Im zkuk and similarly for the adjoint operator, we have that (see Lemma

4.4(a) of [6] or Lemma 7.3(a) of [23])

For " � 0 and Im z > 0 , H � i"M � z is invertible. (A.3)

Denote G"(z) = (H � i"M � z)�1 . Moreover, we introduce also

F"(z) := DG"(z)D with D = hAi�1:

In what follows the argument z is assumed to satisfy, Re z 2 �, Im z > 0 ; it is �xed and

often omitted from the notation. We begin with a series of simple lemmata.

Lemma A.2 For z 2 C + with Re z 2 � , and " � 0 ,

kG"(z)k � C=": (A.4)

Proof: Let f = f(H) . The relations kfG"'k2 = hG�
"f

2G"i' , M � �f2 and Imz � 0

imply

kfG"'k2 � 1

2"�
hG�

"2"MG"i'

� 1

2"�
hG�

"(2"M + 2Im z)G"i';

where we used the notation hBi' = h';B'i . Now, an application of the second resolvent

equation yields kfG"'k2 � 1
2"� hiG�

" � iG"i' , which in turn implies

kfG"'k � 1p
"�
jhG"i'j1=2 (A.5)

and therefore

kfG"k � 1p
"�
kG"k1=2: (A.6)

Next, applying the second resolvent equation to G" and G0 and using that k �fG0k <1 ,

thanks to dist(z;Rn�1) > 0 , we �nd

k �fG"k � C(1 + "kG"k); (A.7)
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where �f = 1� f . This inequality together with (A.6) implies (A.4).

This lemma and its proof have two consequences important for us:

k �f(H)G"(z)k � C; (A.8)

uniformly in " > 0 , where �f(H) = 1� f(H) , due to Eqns (A.4) and (A.7); and

kf(H)G"(z)Dk � C"�1=2kF"(z)k1=2; (A.9)

due to Eqn (A.5) with ' = Du . The last two equations imply in turn that

kG"(z)Dk � C(1 + "�1=2kF"(z)k1=2): (A.10)

In what follows we assume that � is a cut-o� function satisfying

� � 0;
q
� 2 C1

0 (�0) and � � 1 on �2: (A.11)

Next, we introduce the symmetric operator

A� := �(H)A�(H); (A.12)

which is well de�ned in D(A) , due to (5.19). Now de�ne [H;A�] as a quadratic form on

D(A) \ D(H) . Then

[H;A�] = �(H)[H;A]�(H) (A.13)

in a sense of quadratic forms. This relation implies that the operator

B� := [H;A�] is bounded. (A.14)

Lemma A.3 Let B := [H;A] . For any  2 C1
0 (�2) , the operator

 (H)[B;A�] (H) is bounded. (A.15)

Here the operator in (A.15) is initially de�ned in a sense of quadratic forms.

Proof: In the proof below we omit the argument H in �(H) and  (H) . Using that

 � � =  , we compute as quadratic forms

 [B;A�] =  [B;A] +  B[�;A] +  [�;A]B : (A.16)

Since, by (5.5), (5.14) and (5.27),  B , B , [�;A] and  [B;A] are bounded we conclude

that the r.h.s. of (A.16) is bounded, so (A.15) follows.

Our last preparatory step is the following
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Lemma A.4 The operator [M;A�] de�ned initially in a sense of quadratic forms is

bounded.

Proof: Using that f �� = f and omitting again the argument H , we compute in a sense

of quadratic forms

[M;A�] = fB[f;A�] + f [B;A�]f + [f;A�]Bf:

Since fB , Bf , [f;A�] = �[f;A]� and f [B;A�]f are bounded by virtue of (5.26), (5.14)

and (A.15), the statement follows.

Now we are ready for a core estimate of this proof.

Lemma A.5 We have the following estimate

dF"(z)
d"

 � C(kF"(z)k+ "�1=2kF"(z)k1=2+ 1): (A.17)

Proof: Using the de�nitions of G"(z) and F"(z) , we compute

�dF"
d"

= DG"MG"D:

Since f � � = f , we have that M = fB�f . Now we decompose

dF"
d"

= Q1 +Q2 +Q3; (A.18)

where

Q1 = DG"
�fB�

�fG"D;

Q2 = DG"
�fB�fG"D +DG"fB�

�fG"D;

Q3 = �DG"B�G"D:

We bound now the Qj 's. Eqns (A.14) and Eqn (A.8) imply

kQ1k � kDG"
�fk2kB�k � C: (A.19)

Next, (A.8), (A.9) and (A.14) yield

kQ2k � 2kDG"
�fkkB�kkfG"Dk

� Cp
"
kF"k1=2: (A.20)
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The term Q3 is more complicated. We decompose it as

�Q3 = Q4 +Q5; (A.21)

where

Q4 = DG"[H � i"M � z;A�]G"D (�)

and

Q5 = i"DG"[M;A�]G"D:

Expanding the commutator in (�) , we �nd

Q4 = DA�G"D �DG"A�D:

Hence, due to kDA�k � C and (A.10),

kQ4k � 2kDA�kkG"Dk
� C(1 + "�1=2kF"k1=2): (A.22)

Finally, we have due to (A.10) and Lemma A.4

kQ5k � "kDG"k2k[M;A�]k
� C("+ kF"k): (A.23)

Now, Eqns (A.18){(A.23) imply (A.17).

To complete the proof of Theorem 5.5 we iterate the rough estimate

kF"(z)k � C

"
; (A.24)

which follows from (A.4), with the help of di�erential inequality (A.17). On the �rst step

plugging (A.24) into the r.h.s. of (A.17) we obtain
dF"(z)

d"

 � C
"
. Integrating the latter

inequality from " to 1 and using that, due to (A.24), kF1(z)k � C , we �nd kF"(z)k �
C log 1

"
. Plugging the latter estimate into the r.h.s. of (A.17) yields now

dF"(z)
d"

 � C

r
log 1

"

"

which upon the integration from 0 to 1 gives

kF0(z)k � C;

uniformly in z , Imz > 0 and Re z 2 �, which, in virtue of the de�nition of F"(z) , is

equivalent to the statement of Theorem A.1.
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B Feshbach Projection Method

Lemma B.1 Let B be a self-adjoint operator on a Hilbert space H = H1 � H2 and let

(in the obvious notation) B22 � � idH2
, � > 0 . Then �0 := inf specB is either � � or it

satis�es the relation

�0 = inf spec
�
B11 � B12(B22 � �0)

�1B21

�
: (B.1)

Proof: Let �0 < � . The Feshbach projection method implies that � 2 �(B) i�

� 2 �
�
B11 �B12(B22 � �)�1B21

�
(B.2)

provided � < � , which implies (B.1).
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