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Abstract

By applying time dependent methods we show that a given Gamow state solution
for a Schrödinger operator with a compactly supported potential can be associated
with a corresponding resonance. Our method is to utilize the given Gamow vector
for the construction of an appropriate problem of perturbation of an embedded
eigenvalue which give rise to the associated resonance.

1. Introduction

In this work we investigate the close relation between the construction of quasimodes
(approximate eigenfunctions) and the resonances of certain quantum mechanical potential
models. The problem of the construction of approximate eigenfunctions for Schrödinger
potential models was considered many times over the years. Many of the diverse methods
for producing approximate eigenfunctions came to be known as ’quasimode’ constructions.
For scattering problems it is possible to construct quasimodes for the scattering Hamilto-
nian by utilizing a procedure in which a cutoff is applied to a generalized eigenfunction
(Gamow vector) corresponding to a scattering resonance. In this way one obtains a Hilbert
space state which is an approximate eigenfunction of the Hamiltonian for the scattering.
An immediate question which then arises concerns the relation between the quasimode
thus obtained and the resonance.

In several recent papers there has been a considerable progress in the understanding
of the relationship between resonances near the real axis and the existence of quasimodes
for compactly supported perturbations of the Laplacian. Works by Stefanov and Vodev
[SV] followed by Tang and Zworski [TZ] showed that the existence of a sequence of real
quasimodes qj → ∞ corresponding to quasimode states supported in a fixed compact set
implies the existence of a sequence of resonances (defined as scattering poles) λj rapidly
converging to the real axis. Stefanov then continued to show [St] the converse statement,
i.e., the existence of a sequence of resonances rapidly converging to the real axis implies the
existence of quasimodes with quasimode states supported in a compact set whose interior
contains the (compactly supported) scatterer.

In this work we introduce a new approach to the problem of the relation between
quasimodes and resonances which is suitable for quantum mechanical scattering problems
with compactly supported potentials. We make use of recent results obtained by Soffer and
Weinstein [SW] and Costin and Soffer [CS] which improve on the theory of resonances and
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perturbations of embedded eigenvalues and which do not require assumptions on the ana-
lytic continuation properties of the resolvent. We show that a construction of a quasimode
by truncation of a Gamow state defines a corresponding problem of a perturbation of an
embedded eigenvalue. For the case of a Schrödinger operator with compactly supported
potential we continue to show that all the premises of the theorem on resonances proved
by Soffer and Costin in [CS] hold and, hence, the existence of a resonance is implied.

An interesting implication of the method of proof of Theorem A in this work is that
a truncation procedure may be applied to a Gamow vector corresponding to a complex
“eigenvalue” in the upper half-plane, with the resulting quasimode again corresponding,
via Theorem A, to a unique resonance. As an example we consider a scattering problem
with a simple square barrier potential. For this simple example it is easy to find a Gamow
state associated with a point in the upper half-plane which, by the cutoff procedure applied
in this work, corresponds to a unique resonance. On the other hand, the same Gamow
state can be shown to be associated with a zero of the S-matrix in the upper half-plane.
The analysis of this example clearly demonstrates the relation between resonances and
zeros of the analytic continuation of the S-matrix to the upper half-plane.

The paper is organized as follows: In Section 2 we first introduce the procedure of
truncating a Gamow state in order to produce a ’quasimode’. Next we use the quasimode
to define a perturbation term and arrive at a decomposition of the Hamiltonian and de-
fine a problem of perturbation of embedded eigenvalue. Once this is done we are able to
state Theorem A, our main theorem. The proof of Theorem A is given in Section 3. As
a first step we state, in Subsection 3.1 the Costin-Soffer theorem for resonances. Proved
by time dependent methods, this theorem relates perturbations of embedded eigenvalues
to a correspnding time evolution typical of resonance decay. The proof of Theorem A is
essentially divided into two parts, corresponding to the two sets of conditions required by
the Costin-Soffer theorem, i.e., the conditions imposed on the unperturbed Hamiltonian
and on the perturbation respectively. Accordingly, in Subsection 3.2, we prove that the
decomposition H = H̃0 +W of the Hamiltonian H introduced in Section 2 is such that the
perturbation term W satisfies the assumptions of the Costin-Soffer theorem. Some com-
ments regarding the estimates of Subsection 3.2 are given in Subsection 3.3. In Subsection
3.4 we continue to show that the unpertubed Hamiltonian H̃0 satisfies the corresponding
assumptions of the Costin-Soffer theorem. The conclusions of this theorem then follow
immediately, and the proof of Theorem A is complete. Section 4 of the paper deals with
Gamow states associated with points in the upper-half of the complex plane. As mentioned
above, these states also correspond to resonances by an application of the same cutoff pro-
cedure described in Section 2 and Theorem A applies again. Next we discuss the example
of a square barrier potential problem. Gamow states for a problem of a Schrödinger equa-
tion with a simple square barrier potential where calculated, e.g., by M. Gadella and R.
de la Madrid in [dMG]. We recall their solution of the problem and note the existence of a
Gamow vector, corresponding to a zero of the S-matrix, to which the truncation procedure
can be applied and, subsequently, a corresponding resonance can be found. This example
exhibit a relation between zeros of the S-matrix in the upper-half plane and resonances.
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2. Main results
Our main result in this work states that, for a certain class of quantum mechanical

potential problems, quasimode states constructed via the application of an appropriate
cutoff procedure to Gamow vectors results in a certain decomposition of the Hamiltonian
leading to a corresponding embedded eigenvalue perturbation problem. Analysis of this
later perturbation problem then proves the existence of a resonance associated with the
original Gamow vector. We first discuss the construction of a quasimode state by the
procedure of cutting a Gamow vector solution. Following the construction of the quasimode
we can define the corresponding decomposition of the Hamiltonian and then state and prove
our main theorem.

Let H0 = −1/2∆x and let V be a compactly supported potential such that H = H0+V
is self-adjoint on L2(R3). We assume furthermore that ψG

z0
is a Gamow vector ‘solution’

of the eigenvalue problem for H with complex ‘eigenvalue’ z0, Im[z0] 6= 0, i.e., we locally
have

[HψG
z0

](x) = z0ψG
z0

(x) (2.1)

Of course, ψG
z0

cannot be normalized and is not an element of L2(R3).
Let R1 > 0 be such that supp[V ] ⊂ B1 = {x | |x| < R1}. Take R2 > R1, denote

B2 = {x | |x| < R2} and let χ(x) = χ(|x|) be a smooth, non-negative C∞ cutoff function
such that

χ(x) = 1 for x ∈ B1

χ(x) = 0 for x ∈ R3\B2
(2.2)

Next, we define the procedure of cutting the Gamow vector by defining

ψ̃z0(x) = χ(x)ψG
z0

(x) (2.3)

where the resulting state ψ̃z0 is now an element of L2(R3). We call ψ̃z0 a ‘quasimode’
associated with the Gamow vector ψG

z0
. Setting notations for the real and imaginary parts

of z0 by writing z0 = E0 − iΓ and, in addition, denoting k0 =
√

z0 (taking the root which
makes a smaller angle with R+), we proceed to define r0, a parameter with dimension of
length (in the natural units we are using here), to be

r0 =
Re[k0]

Γ
(2.4)

It will be seen below that r0 is the parameter by which we control the estimates needed
for proving our main results.

Following the definition of the quasimode ψ̃z0 we turn to the decomposition of the
Hamiltonian. We define W , a rank one interaction term

W =
H ′|ψ̃z0〉〈ψ̃z0 |H ′

〈ψ̃z0 |H ′|ψ̃z0〉
(2.5)

where we have denoted H ′ = H − E0. We define a new Hamiltonian H̃0 as follows

3



H̃0 = H −W (2.6)

and so

H = H̃0 + W (2.7)

By construction we have

H̃0|ψ̃z0〉 = (H −W )|ψ̃z0〉 = H|ψ̃z0〉 − (H −E0)|ψ̃z0〉 = E0|ψ̃z0〉 (2.8)

hence E0 is an eigenvalue of H̃0 with eigenvector ψ̃z0 . Eq. (2.7) provides the decomposition
of the Hamiltonian mentioned above where the spectrum of H̃0 contains the embedded
eigenvalue E0 and W is a rank one perturbation.

Let P̃0 be the orthogonal projection on the normalized eigenstate ψ̃z0/‖ψ̃z0‖ and let
P̃1b denote the spectral projection on Hpp ∩ (P̃0H)⊥ (the pure point spectrum of H̃0

orthogonal to ψ̃z0). Let ∆ be a small interval around E0 such that there exists a union
of intervals ∆∗, disjoint from ∆, which contains a neighborhood of infinity and all of the
thresholds of H̃0 except possibly those in a small neighborhood of ∆. We shall use the
notation g∆ for a smoothed out characteristic function of the interval ∆. We take g∆ to be
a non-negative C∞ function, identically equal to one on ∆, zero outside a neighborhood
of ∆ and such that the support of its derivatrives is small compared with the length of ∆.
Define an operator P̃1 as follows

P̃1 = P̃1b + g∆∗(H̃0)

where g∆∗(H̃0) is the smoothed out characteristic function of the subset ∆∗ of the spectrum
of H̃0. Furthermore, denote

P̃ ]
c = I − P̃0 − P̃1

hence P̃ ]
c is a smoothed out projection on the spectrum of H̃0 excluding all real eigenvalues,

real neighborhoods of thresholds and infinity. Using the notation 〈x〉 = (1 + |x|2)1/2 we
define the following norm for the interaction term W

|||W ||| = ‖〈x〉2σWg∆(H̃0)‖+ ‖〈x〉σWg∆(H̃0)〈x〉σ‖+ ‖〈x〉σW (H̃0 + c)−1〈x〉−σ‖ (2.9)

With these definitions in place we can state our main result.
Denote H0 = − 1

2∆x and let n be a natural number, n ≥ 3. Our assumptions are:

Assumptions on the potential V :

(V1) The support of the potential V is compact.

(V2) The Hamiltonian H satisfies a Mourre estimate on some interval ∆1 containing the
point E0

g∆1(H)i[H,A]g∆1(H) ≥ θg∆1(H) + K
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where θ > 0 and K is compact.
(V3) V is H0 bounded with H0 bound smaller than 1.
(V4) (x · ∇x)kV is H0-bounded for all k ≤ n.

Assumptions on the Gamow vector ψG
z0

:
(G1) The Gamow vector ψG

z0
is locally a solution of Eq. (2.1) with z0 = E0 − iΓ and

E0,Γ > 0.
(G2) In the region outside of the support of the potential the Gamow state solution is of

the form

ψG
z0

(x) = F1
eik0r

r
, r = |x|

where F1 is a constant (with appropriate dimensions such that the norm of ψ̃z0 is
dimensionless).

Before stating the main theorem of this work we remark that the Hη regularity of H̃0

means that (ψ, (H̃0−z)−1φ) is in the Sobolev space Hη in the variable z close to the point
E0, where the states ψ and φ are taken to be in the dense set {ψ ∈ L2; 〈x〉σφ ∈ L2}.

We can now state our main result:

Theorem A: Let H0 = − 1
2∆x and assume that V is a potential satisfying conditions

(V1)-(V4) (H = H0 + V is then self-adjoint on L2(R3)). Assume furthermore that the
eigenvalue problem, Eq. (2.1), admits a Gamow state solution ψG

z0
satisfying conditions

(G1)-(G2) and construct a quasimode state ψ̃z0 as in Eq. (2.3) with the cutoff function
χ(x) satisfying the conditions in Eq. (2.2). Define W and H̃0 according to Eq. (2.5) and
Eq. (2.6) respectively. Then, assuming that r0 is sufficiently large and Γ2r0 is sufficiently
small we have:
(α) H̃0 is Hη regular for some η > 0 and there exists an open interval ∆ with E0 ∈ ∆ but

containing no other eigenvalue of H̃0.
(β) The Hamiltonian H = H̃0 + W has no eigenvalues in ∆.
(γ) The spectrum of H is purely absolutely continuous in ∆ and, for some σ > 0, we have

the following local decay estimate for φ0 with 〈x〉σφ0 ∈ L2:

‖〈x〉−σe−iHtg∆(H)φ0‖2 ≤ C〈t〉−1−η‖〈x〉σφ0‖2 (2.10)

(δ) For t ≥ 0 we have

e−iHtg∆(H)φ0 = (I + AW )(e−iω∗ta(0)ψ̃z0 + e−iH̃0tφd(0)) + R(t) (2.11)

where a(0) and φd(0) are given by

a(0) = ‖ψ̃z0‖−2(ψ̃z0 , g∆(H)φ0)

and
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φd(0) = P̃ ]
c (1− P̃0)g∆(H)φ0

AW is an operator (the exact form of which will not be specified here; see [CS]) such that

‖AW ‖ ≤ C|||W ||| (2.12)

where |||W ||| is the norm defined in Eq. (2.9) and, moreover, for r0 large enough and Γ2r0

small enough, and for each σ > 0, the norm |||W ||| can be made as small as desired.
The quantity ω∗ is complex and can be written as

ω∗ = s0 − iγ (2.13)

where s0 and γ can be found by solving a certain transcendental equation (see [CS]). The
remainder R(t) is estimated, for η > 1, to be O(t−η+1) and for η < 1, to be O(t−η−1).

From Eq. (2.10) we see that the local decay estimates are valid for the full evolution
in a suitable interval around E0. Eq. (2.11) exhibits explicitly the typical resonance
behavior with a separation of the exponentially decaying contribution from the background
contribution. In addition, the inverse power decay law for times long compared with the
resonance lifetime is also included in the results of the theorem.

Theorem A is proved in the next section. The proof is centered on a theory of res-
onances developed by Soffer and Weinstein [SW] and Costin and Soffer [CS]. The Soffer-
Weinstein-Costin theory deals with resonances obtained by a perturbation of embedded
eigenvalues and Theorem A is essentially proved by showing that the assumptions of the
Costin-Soffer theorem regarding the unperturbed Hamiltonian and the perturbation are
satisfied by H̃0 and W in the decomposition of H in Eq. (2.7).

3. Proof of Theorem A

3.1. The Soffer-Costin-Weinstein resonance theory

For the class of quantum mechanical models defined in Theorem A the construction
of a quasimode by cutting a Gamow vector leads, as described in Section 2 above, to the
definition of an associated problem of a perturbation of an embedded eigenvalue. The later
satisfies the conditions of the theorems of Costin and Soffer [CS] and Soffer and Weinstein
[SW] on resonances. We therefore begin the proof of Theorem A in this subsection with a
statement of the Soffer-Costin-Weinstein resonance theory. In the subsequent subsections
we show that H̃0 and W satisfy the appropriate conditions of the Costin-Soffer theorem
on resonances.

Consider a Hamiltonian H which can be written in the form of an unperturbed Hamil-
tonian H0 plus a perturbation W

H = H0 + W = H0 + εW (ε)

where ε is a small parameter, taken to be the size of the perturbation in an appropriate
norm (cf. e.g. Eq. (3.6)). Let H0 be a self-adjoint operator on H = L2(Rn), we assume
that H0 has a simple eigenvalue λ0 with a normalized eigenvector ψ0 i.e.:
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H0ψ0 = λ0ψ0, ‖ψ0‖ = 1 (3.1)

In a similar way to the definitions in Section 2 above we define P0 to be the orthogonal
projection on ψ0 and P1b to be the spectral projection on Hpp ∩ (P0H)⊥ (the pure point
spectrum of H0 orthogonal to ψ0). We take ∆ to be a small interval around λ0 such that
there exists a union of intervals ∆∗, disjoint from ∆, which contains a neighborhood of
infinity and all of the thresholds of H0 except possibly those in a small neighborhood of ∆.
We again use the notation g∆ for a smoothed out characteristic function on the interval ∆
(with the same properties as listed in Section 2, below Eq. (2.8)). We define P1 as follows

P1 = P1b + g∆∗(H0) (3.2)

and also

P ]
c = I − P0 − P1 (3.3)

hence P ]
c is a smoothed out projection on the spectrum of H0 excluding all real eigenvalues,

real neighborhoods of thresholds and infinity.
The Soffer-Costin-Weinstein theorem on resonances requires the following assumptions

on the unperturbed Hamiltonian H0 and the perturbation W :

Assumptions on H0:

(I) H0 a is self-adjoint operator with domain D dense in L2(Rn).

(II) λ0 is a simple embedded eigenvalue of H0. We denote the normalized eigenfunction
corresponding to the eigenvalue λ0 by ψ0.

(III) There exists an open interval ∆ with λ0 ∈ ∆ but containing no other eigenvalues of
H0.

(IV) (local decay estimate) Let r > 1. There exists σ > 0 such that if 〈x〉σf ∈ L2 then

‖〈x〉−σe−iH0tP ]
c f‖2 ≤ C〈t〉−r‖〈x〉σf‖2 (3.4)

(V) The L2 norm of the operator 〈x〉σ(H0 + c)−1〈x〉−σ (where c is real) can be made
sufficiently small by an appropriate choice of the number c.

In addition, we assume that H0 is Hη regular, i.e., that (ψ, (H0 − z)−1φ) is in the
Sobolev space Hη, of order η, in the z variable for z close to λ0. The states ψ and φ are
taken to be in the dense set {ψ ∈ L2; 〈x〉σφ ∈ L2}.

In order to specify the assumptions on the perturbation W we make use of the defi-
nition of the norm |||W ||| in Eq. (2.9), with H0 replacing H̃0.

Assumptions on W :

(a) W is symmetric and H = H0 + W is self-adjoint on D. There exists a constant c ∈ R
such that c lies in the resolvent sets of H0 and H (remark: the constant c mentioned
here can be used in assumption (V) above)
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(b) For the same value of σ as in (IV) and (V) above we require

|||W ||| < ∞ (3.5)

and

‖〈x〉σW (H0 + c)−1〈x〉σ‖ < ∞ (3.6)

(c) (resonance condition) For a suitable choice of λ we have

Γ(λ, ε) ≡ Γ(λ) ≡ πε2(W (ε)ψ0, δ(H0 − λ)(I − P0)W (ε)ψ0) 6= 0 (3.7)

Assumption (c) here is a condition requiring that the Fermi golden rule does not
vanish.

Soffer and Costin’s improved version of the Soffer-Weinstein theorem on resonances
states the following:

Theorem (Soffer-Costin-Weinstein): Let H0 satisfy conditions (I)-(V) and W
satisfy conditions (a)-(c). We assume that ε is sufficiently small and either

(VI) H0 is Hη regular with η > 1
or

(VI’) H0 is Hη regular with 0 < η < 1 and

Γ > Cεn, n ≥ 2

with η > (n− 2)/n.
Then:

(α′) The perturbed Hamiltonian H = H0 + W has no eigenvalues in ∆.
(β′) The spectrum of H is purely absolutely continuous in ∆ and we have the following

estimate for φ0 with 〈x〉σφ0 ∈ L2

‖〈x〉−σe−iHtg∆(H)φ0‖2 ≤ Cε〈t〉−1−η‖〈x〉σφ0‖2 (3.8)

(γ′) For t ≥ 0 we have

e−iHtg∆(H)φ0 = (I + AW )(e−iω∗ta(0)ψ0 + e−iH0tφd(0)) + R(t) (3.9)

where a(0) and φd(0) are determined by the initial data, AW is an operator (the exact form
of which will not be specified here; see [CS]) such that

‖AW ‖ ≤ Cε|||W ||| (3.10)

The remainder R(t) is estimated, for η > 1, to be R(t) = O(ε2t−η+1) and for η < 1 (ε
fixed), to be R(t) = O(Γ−1t−η−1). The quantity ω∗ is complex and can be written as

ω∗ = s0 − iΓ (3.11)
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where s0 and Γ can be found by solving a certain transcendental equation (see [CS]).

Eq. (3.8) shows that the local decay estimates are valid for the evolution generated by
H in a suitable interval around λ0. Eq. (3.9) provides the typical resonance behavior with
a separation of the exponentially decaying contribution from the background contribution.
The theorem also includes the inverse power decay law for times long compared with the
resonance lifetime.

In the next subsection we take up the task of showing that, under the assumptions of
Theorem A, the decompostion H = H̃0 + W in Eq. (2.7) is such that H̃0 satisfies condi-
tions (I)-(V) and W satisfies conditions (a)-(c) above. The existence of a corresponding
resonance is then a direct result of the Soffer-Costin theorem.

3.2 Conditions on the interaction W
In this subsection we prove that the interaction W satisfies conditions (a)-(c) of the

Soffer-Costin theorem. It turns out that the main difficulty in the proof of the theorem
is to show that it is possible to control the first term on the r.h.s. of Eq. (2.9). Other
difficult intermediate results which are needed essentially follow from the estimate on this
term. Hence, we start with an estimate of the operator norm ‖〈x〉2σWg∆(H̃0)‖. Denoting
H ′ = H − E0, we have

‖〈x〉σWg∆(H̃0)‖ = sup
‖ξ‖≤1,‖ζ‖≤1

|〈ζ|〈x〉σWg∆(H̃0)|ξ〉| =

= sup
‖ξ‖≤1,‖ζ‖≤1

∣

∣

∣

∣

∣

〈ζ|〈x〉σH ′|ψ̃z0〉〈H ′ψ̃z0 |g∆(H̃0)ξ〉
〈ψ̃z0 |H ′|ψ̃z0〉

∣

∣

∣

∣

∣

=

=

[

sup‖ζ‖≤1 |〈ζ|〈x〉σH ′|ψ̃z0〉|
] [

sup‖ξ‖≤1 |〈H ′ψ̃z0 |g∆(H̃0)ξ〉|
]

|〈ψ̃z0 |H ′|ψ̃z0〉|

(3.12)

But

sup
‖ζ‖≤1

〈ζ|〈x〉σH ′ψ̃z0〉| = ‖〈x〉σ(H − E0)ψ̃z0‖ (3.13)

and

sup
‖ξ‖≤1

|〈H ′ψ̃z0 |g∆(H̃0)ξ〉| = sup
‖ξ‖≤1

|〈g∆(H̃0)H ′ψ̃z0 |ξ〉| = ‖g∆(H̃0)H ′ψ̃z0‖ (3.14)

and so

‖〈x〉σWg∆(H̃0)‖ ≤
‖〈x〉σH ′ψ̃z0‖ ‖g∆(H̃0)H ′ψ̃z0‖

|〈ψ̃z0 |H ′|ψ̃z0〉|
(3.15)

We will estimate, in turn, each factor in Eq. (3.15). First we note that, by definition of B1,
the potential V vanishes in R3\B1 and, furthermore, by assumption (G2), in this region
the Gamow vector solution has the form
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ψG
z0

(x) = F1
eik0r

r
, r = |x|, x ∈ R3\B1 (3.16)

Thus we have

‖〈x〉σH ′ψ̃z0‖2 = Γ2
∫

B1

d3x 〈x〉2σ|ψG
z0

(x)|2 +
∫

B2\B1

d3x 〈x〉2σ|∆′
xψ̃z0(x)|2

= Γ2
∫

B1

d3x 〈x〉2σ|ψG
z0

(x)|2 + 4π|F1|2
∫ R2

R1

dr r2〈r〉2σ
∣

∣

∣

∣

∆′
r

(

χ(r)
eik0r

r

)∣

∣

∣

∣

2

(3.17)
where ∆′

x = −∆x − E0, ∆′
r = −∆r − E0 and ∆r is the radial part of the Laplacian. At

this point we make use of the fact that the cutoff function χ(x) was chosen in such a way
that all of its derivatives are continuous and bounded in B2\B1. We have

∫ R2

R1

dr r2〈r〉2σ
∣

∣

∣

∣

∆′
r

(

χ(r)
eik0r

r

)∣

∣

∣

∣

2

=

=
∫ R2

R1

dr 〈r〉2σ
∣

∣

∣

∣

(

d2χ(r)
dr2 + 2|Im k0|

dχ(r)
dr

)

+ iRe k0

(

2
dχ(r)

dr
+

1
r0

χ(r)
)∣

∣

∣

∣

2

e2|Imk0|r

Now, the assumption that r0 is large implies that |Im k0| is small. In fact, Eq. (3.45) below
shows that |Im k0| = o(r−1

0 ). Thus we obtain the result that there exist two constants
M1(σ), M2(σ) such that

∫ R2

R1

dr r2〈r〉2σ
∣

∣

∣

∣

∆′
r

(

χ(r)
eik0r

r

)∣

∣

∣

∣

2

≤ M1(σ) + (Re k0)2M2(σ) (3.18)

We conclude that

‖〈x〉σH ′ψ̃z0‖2 ≤ Γ2〈R1〉2σ
∫

B1

d3x |ψG
z0

(x)|2 + 4π|F1|2(M1(σ) + (Re k0)2M2(σ)) (3.19)

We turn now to the task of evaluating the second term in the numerator of Eq. (3.15).
The starting point is the expression for g∆(H̃0)

g∆(H̃0) =
∫ ∞

0
dλχ∆,E0(λ)|λ〉〈λ| (3.20)

where χ∆,E0 is a smoothed out characteristic function on the interval ∆ centered at E0

and |λ〉 are generalized (continuous spectrum) eigenvectors of H̃0, i.e. 〈λ|H̃0|f〉 = λ〈λ|f〉.
We have

‖g∆(H̃0)H ′ψ̃z0‖2 = 〈g∆(H̃0)H ′ψ̃z0 |g∆(H̃0)H ′ψ̃z0〉 =
∫ ∞

0
dλχ2

∆,E0
(λ)|〈ψ̃z0 |H ′|λ〉|2

(3.21)
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We would like to calculate the quantity 〈ψ̃z0 |H ′|λ〉. For this purpose we recall that H̃0 =
H −W and use wave operators intertwining H and H̃0

H̃0Ω± = Ω±H (3.22)

Denoting the continuous spectrum generalized eigenvectors of H by |λ〉H we have

〈f |H̃0|λ〉 = 〈f |H̃0Ω−|λ〉H = 〈f |Ω−H|λ〉H = λ〈f |Ω−|λ〉H = λ〈f |λ〉
with |λ〉 = Ω−|λ〉H . Eq. (3.21) can then be written

‖g∆(H̃0)H ′ψ̃z0‖2 =
∫ ∞

0
dλ χ2

∆,E0
(λ)|〈ψ̃z0 |H ′Ω−|λ〉H |2 (3.23)

For a Hamiltonian Hα = H0 + α|ψ〉〈ψ| with a rank one perturbation we can use the
Aronszajn-Krein formulas which can be found, for example, in [AK]: The wave operators
are given by

Ω±(Hα,H0) = I − 1
2πi

∫

R+

α
1 + αF∓(λ)

(H0 − λ± iε)−1|ψ〉〈ψ|

[(H0 − λ− iε)−1 − (H0 − λ + iε)−1]dλ

with

F±(λ) = 〈ψ|(H0 − λ∓ iε)−1|ψ〉
Note that, when using these expressions for the wave operators, we are considering here
H to be the unperturbed Hamiltonian while Hα, the perturbed Hamiltonian, is taken to
be H̃0. In order to use these expressions we rewrite the perturbation W as

W =
(H − E0)|ψ̃z0〉〈ψ̃z0 |(H − E0)

〈ψ̃z0 |(H −E0)|ψ̃z0〉
=
〈ψ̃z0 |H ′2|ψ̃z0〉
〈ψ̃z0 |H ′|ψ̃z0〉

Pψ̂z0
= −αPψ̂z0

(3.24)

where Pψ̂z0
is the projection operator on |ψ̂z0〉 = H ′|ψ̃z0〉 and

α = −〈ψ̃z0 |H ′2|ψ̃z0〉
〈ψ̃z0 |H ′|ψ̃z0〉

(3.25)

With Eq. (3.24) and (3.25) we can write H̃0 = H−W = H +αPψ̂z0
and use the expression

for the wave operator from above to obtain

Ω−(H̃0,H) = I − 1
2πi

∫

R+

α
1 + αF+(λ)

(H − λ− iε)−1 |ψ̂z0〉〈ψ̂z0 |
〈ψ̂z0 |ψ̂z0〉

[(H − λ− iε)−1 − (H − λ + iε)−1]dλ =

= I − 1
2πi

∫

R+

α
1 + αF+(λ)

(H − λ− iε)−1 H ′|ψ̃z0〉〈ψ̃z0 |H ′

〈ψ̃z0 |H ′2|ψ̃z0〉
[(H − λ− iε)−1 − (H − λ + iε)−1]dλ

(3.26)
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with

F+(λ) =
〈ψ̂z0 |(H − λ− iε)−1|ψ̂z0〉

〈ψ̂z0 |ψ̂z0〉
(3.27)

applying the wave operator to |λ〉H we obtain

Ω−|λ〉H = |λ〉H − α
1 + αF+(λ)

(H − λ− iε)−1 H ′|ψ̃z0〉〈ψ̃z0 |λ〉H(λ− E0)
〈ψ̃z0 |H ′2|ψ̃z0〉

(3.28)

With the help of Eq. (3.27) and Eq. (3.28) we get

〈ψ̃z0 |H ′|λ〉 = 〈ψ̃z0 |H ′Ω−|λ〉H =

= (λ− E0)〈ψ̃z0 |λ〉H
[

1− αF+(λ)
1 + αF+(λ)

]

= (λ−E0)〈ψ̃z0 |λ〉H
[

1
1 + αF+(λ)

]

(3.29)
In order to continue we need to obtain an expression for αF+(λ). Writing this quantity
explicitly we get

αF+(λ) = −〈ψ̃z0 |H ′2|ψ̃z0〉
〈ψ̃z0 |H ′|ψ̃z0〉

〈ψ̃z0 |H ′(H − λ− iε)−1H ′|ψ̃z0〉
〈ψ̃z0 |H ′2|ψ̃z0〉

=

= −〈ψ̃z0 |H ′|ψ̃z0〉−1
∫ ∞

0
dλ′

(λ′ −E0)2|〈ψ̃z0 |λ′〉H |2

λ′ − λ− iε

(3.30)

hence

1 + αF+(λ) = −〈ψ̃z0 |H ′|ψ̃z0〉−1

(

∫ ∞

0
dλ′

(λ′ − E0)2|〈ψ̃z0 |λ′〉H |2

λ′ − λ− iε
− 〈ψ̃z0 |H ′|ψ̃z0〉

)

=

= −〈ψ̃z0 |H ′|ψ̃z0〉−1
∫ ∞

0
dλ′

(

(λ′ − E0)2

λ′ − λ− iε
− (λ′ − E0)

)

|〈ψ̃z0 |λ′〉H |2 =

= −〈ψ̃z0 |H ′|ψ̃z0〉−1(λ− E0)
∫ ∞

0
dλ′

λ′ − E0

λ′ − λ− iε
|〈ψ̃z0 |λ′〉H |2

(3.31)
Inserting the r.h.s. of Eq. (3.31) into Eq. (3.29) we have

〈ψ̃z0 |H ′|λ〉 = (λ− E0)〈ψ̃z0 |λ〉H
[

1
1 + αF+(λ)

]

=

= −〈ψ̃z0 |λ〉H〈ψ̃z0 |H ′|ψ̃z0〉
(∫ ∞

0
dλ′

λ′ − E0

λ′ − λ− iε
|〈ψ̃z0 |λ′〉H |2

)−1 (3.32)

Combining Eq. (3.32) with Eq. (3.21) we finally get
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‖g∆(H̃0)H ′ψ̃z0‖2 =
∫ ∞

0
dλχ2

∆,E0
(λ)|〈ψ̃z0 |H ′|λ〉|2 =

= 〈ψ̃z0 |H ′|ψ̃z0〉2
∫ ∞

0
dλχ2

∆,E0
(λ)|〈ψ̃z0 |λ〉H |2|G(λ)|−2

(3.33)

where

G(λ) ≡
∫ ∞

0
dλ′

λ′ − E0

λ′ − λ− iε
|〈ψ̃z0 |λ′〉H |2 (3.34)

We prove below that for a properly chosen interval ∆, centered at E0, and for some constant
C > 0, the following inequality holds for any λ in the support of χ∆,E0

|G(λ)| ≥ C‖ψ̃z0‖2, λ ∈ supp[χ∆,E0 ] (3.35)

We note that for λ = E0 we have G(E0) = ‖ψ̃z0‖2 and by continuity in λ there always
exists an interval centered at E0 for which Eq. (3.35) holds. Hence, Eq. (3.35) should
hold in the sense that the interval ∆ is independent of the parameter r0 controling the
estimates. Assuming for the moment that the inequality in Eq. (3.35) is valid we can use
it to simplify Eq. (3.33) with the result

‖g∆(H̃0)H ′ψ̃z0‖ ≤ C|〈ψ̃z0 |H ′|ψ̃z0〉|‖ψ̃z0‖−1 (3.36)

Eq. (3.15), together with Eq. (3.19) and (3.36) imply that

‖〈x〉σWg∆(H̃0)‖ ≤
‖〈x〉σH ′ψ̃z0‖ ‖g∆(H̃0)H ′ψ̃z0‖

|〈ψ̃z0 |H ′|ψ̃z0〉|

≤ C‖ψ̃z0‖−1
(

Γ2〈R1〉2σ
∫

B1

d3x |ψG
z0

(x)|2 + 4π|F1|2(M1(σ) + (Re k0)2M2(σ))
)1/2

≤ C

(

Γ2〈R1〉2σ
∫

B1
d3x |ψG

z0
(x)|2 + 4π|F1|2(M1(σ) + (Re k0)2M2(σ))
∫

B1
d3x |ψG

z0
(x)|2

)1/2

(3.37)
where in order to obtain the second inequality on the r.h.s. of Eq. (3.37) we have used the
relation

‖ψ̃z0‖2 =
∫

B1

d3x |ψG
z0

(x)|2 +
∫

B2\B1

d3x |ψ̃z0(x)|2 >
∫

B1

d3x |ψG
z0

(x)|2 (3.38)

We will presently show that
∫

B1

d3x |ψG
z0

(x)|2 = 4π|F1|2r0e
R1
r0 + o(r−1

0 ) (3.39)
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where r0 is the parameter defined in Eq. (2.4). Assuming that Eq. (3.39) is true we
immediately obtain the desired estimate since, recalling that Γr0 = Re[k0], we find that
for fixed r0 large enough the r.h.s. of Eq. (3.37) is o(Γr1/2

0 ).
We are left with the task of proving the validity of Eq. (3.39) and Eq. (3.35). We start

with Eq. (3.39). Denote H ′ = H − E0 and consider the quantity 〈ψ̃z0 |H ′|ψ̃z0〉 (identical
to the denominator of the interaction W ; see Eq. (2.5)). We have

〈ψ̃z0 |H ′|ψ̃z0〉 = −iΓ
∫

B1

d3x |ψG
z0

(x)|2

− 4π|F1|2
∫ R2

R1

dr e−ik0rχ(r)
[

d2χ(r)
dr2 + 2ik0

dχ(r)
dr

+ iΓχ(r)
]

eik0r =

= −iΓ
∫

B1

d3x |ψG
z0

(x)|2

− 4π|F1|2
∫ R2

R1

dr χ(r)
[

d2χ(r)
dr2 + 2ik0

dχ(r)
dr

+ iΓχ(r)
]

e2|Imk0|r

(3.40)
We will need below an estimated value for k0. Recall that z0 = E0 − iΓ and assume that
Γ/E0 << 1. It will be shown presently that this is equivalent to the assumption that
the parameter r0 defined in Eq. (2.4) can be as large as we want. Writing z0 in polar
coordinates as z0 = rz0e

−iθz0 we have

z0 = E0 − iΓ = rz0(cos(θz0)− i sin(θz0)) (3.41)

and so

k0 =
√

z0 = r
1
2
z0(cos(θz0/2)− i sin(θz0/2)) (3.42)

The condition Γ/E0 << 1 implies that θz0 ≈ Γ/E0 << 1 and r1/2
z0 =

√
E0 +o(Γ2/E2

0). We
have also cos(θz0/2) = 1 + o(θ2

z0
) and sin(θz0/2) ≈ θz0/2 + o(θ3

z0
). Eq. (3.42) then implies

that

k0 =
√

E0(1− i
Γ

2E0
+ o(Γ2/E2

0)) =
√

E0 − i
Γ

2
√

E0
+ o(Γ2/E3/2

0 ) (3.43)

With Eq. (3.43), the parameter r0 defined in Eq. (2.4) can be approximated as follows

r0 =
Re[k0]

Γ
≈
√

E0

Γ
≈ 1

2|Im[k0]|
(3.44)

and we find that

k0 = Γr0 − i
1

2r0
+ io(r−2

0 ) (3.45)

where the quantity o(r−2
0 ) is real. Using this expression for k0 in Eq. (3.40) we get
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(ψ̃z0 ,H
′ψ̃z0) = −iΓ

∫

B1

d3x |ψG
z0

(x)|2 − 4π|F1|2×
∫ R2

R1

dr χ(r)
[

d2χ(r)
dr2 + 2i

(

Γr0 − i
1

2r0
+ io(r−2

0 )
)

dχ(r)
dr

+ iΓχ(r)
]

e
r

r0
+o(r−2

0 )r =

= −iΓ
∫

B1

d3x |ψG
z0

(x)|2

− 4π|F1|2
∫ R2

R1

dr χ(r)
[

d2χ(r)
dr2 +

1
r0

dχ(r)
dr

+ o(r−2
0 )

dχ(r)
dr

]

e
r

r0 + o(r−2
0 )

− i4π|F1|2Γ
∫ R2

R1

dr χ(r)
[

2r0
dχ(r)

dr
+ χ(r)

]

e
r

r0 + o(r−1
0 )

(3.46)
Since Im〈ψ̃z0 |H ′|ψ̃z0〉 = 0 we expect that

∫

B1

d3x |ψG
z0

(x)|2 + 4π|F1|2
∫ R2

R1

dr
[

2r0
dχ(r)

dr
+ χ(r)

]

e
r

r0 + o(r−1
0 ) = 0 (3.47)

but the second integral in Eq. (3.47) can be evaluated and we find

∫ R2

R1

dr χ(r)
[

2r0
dχ(r)

dr
+ χ(r)

]

e
r

r0 = r0

∫ R2

R1

dr
d
dr

[

χ2(r)e
r

r0

]

=

= r0[χ2(r)e
r

r0 ]
∣

∣

R2

R1
= −r0e

R1
r0

(3.48)

where we assume that χ(R2) = 0 (see Eq. (2.2)). Taken together, Eq. (3.47) and Eq.
(3.48) provides us with Eq. (3.39).

We turn now to the proof of the inequality, Eq. (3.35). We have

G(λ) =
∫ ∞

0
dλ′

λ′ − E0

λ′ − λ− iε
|〈ψ̃z0 |λ′〉H |2 =

∫ ∞

0
dλ′

(λ′ − λ + λ−E0)
λ′ − λ− iε

|〈ψ̃z0 |λ′〉H |2 =

= (λ− E0)[
∫ ∞

0
dλ′

1
λ′ − λ− iε

|〈ψ̃z0 |λ′〉H |2] + ‖ψ̃z0‖2

(3.49)
Eq. (3.35) will hold if there exists a constant 0 < C < 1 for which

∣

∣

∣

∣

(λ− E0)
[∫ ∞

0
dλ′

1
λ′ − λ− iε

|〈ψ̃z0 |λ′〉H |2
]∣

∣

∣

∣

≤ C‖ψ̃z0‖2, λ ∈ supp[χ∆,E0 ] (3.50)

Hence, we need to prove that the interval ∆ can be chosen so that the inequality in Eq.
(3.50) is satisfied. In order to show this we first start by proving that for some interval
∆1, centered at E0, the following inequality holds for some C1 > 0
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∫ ∞

0
dt

∣

∣

∣〈ψ̃z0 |e−iHtg2
∆1

(H)|ψ̃z0〉
∣

∣

∣ < C1‖ψ̃z0‖2 (3.51)

The inequality, Eq. (3.51) can be proved by using a strong low velocity estimate. We have
the following theorem (see [SS], [GS] and also [GD]):

Theorem (Strong low velocity estimate): Assume that the Hamiltonian H sat-
isfies the Mourre estimate in condition (V2) above and that for any χ ∈ C∞0 (R) and n ≥ 2
we have (for the definition of adk

A(B) see Eq. (3.60))

‖adk
Aχ(H)‖ < ∞, k ≤ n

Suppose that λ0 > 0, χ ∈ C∞0 (R), and supp[χ] ⊂ [λ0/2,∞)\σpp(H). Then, for any
n− 1 > s ≥ 0,

‖1[0,λ0]

(

x2

t2

)

χ(H)e−iHtφ‖ ≤ C〈t〉−s‖〈A〉s−φ‖

where 〈r〉− = 〈r〉 for r < 0 and 〈r〉− = 1 for r ≥ 0. The corollary below follows from the
this theorem

Corollary: Under the assumptions of the theorem above, for any n − 1 > s ≥ 0, we
have

‖1[0,λ0]

(

x2

t2

)

χ(H)e−iHtφ‖ ≤ C〈t〉−s‖〈x〉sφ‖

Assumptions (V2)-(V4) on the potential V assures us that the conditions of the strong
low velocity estimate above are satisfied. Choose 0 < λ0 such that [0, λ0] ∩ ∆1 = ∅, let
α = sup[supp[ψ̃z0 ]] and choose t0 such that α2/t20 < λ0. For such a choice of t0 and λ0 we
have

1[0,λ0]

(

x2

t2

)

|ψ̃z0〉 = |ψ̃z0〉, t ≥ t0 (3.52)

Using this identity we have

∫ ∞

t0
dt

∣

∣

∣

∣

〈ψ̃z0 |e−iHtg2
∆1

(H)|ψ̃z0〉
∣

∣

∣

∣

=
∫ ∞

t0
dt

∣

∣

∣

∣

〈ψ̃z0 |1[0,λ0]

(

x2

t2

)

e−iHtg2
∆1

(H)|ψ̃z0〉
∣

∣

∣

∣

≤ ‖ψ̃z0‖
∫ ∞

t0
dt

∥

∥

∥

∥

1[0,λ0]

(

x2

t2

)

g2
∆1

(H)ψ̃z0(t)
∥

∥

∥

∥

(3.53)

Since ψ̃z0 is compactly supported and α = sup[supp[ψ̃z0 ]], the corollary above to the strong
low velocity estimate implies that, for any s ≥ 0
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∥

∥

∥

∥

1[0,λ0]

(

x2

t2

)

g2
∆1

(H)ψ̃z0(t)
∥

∥

∥

∥

≤ C〈α/t〉s‖ψ̃z0‖, t ≥ t0 (3.54)

Hence, for any 1 < s we have

∫ ∞

t0
‖1[0,λ0]

(

x2

t2

)

g2
∆1

(H)e−iHtψ̃z0‖ ≤ C
α

s− 1
(α/t0)s−1‖ψ̃z0‖ = C2‖ψ̃z0‖ (3.55)

where the constant C2 depends also on the H-bounds of assumption (V4). Since for all
values of t we have

∣

∣

∣

∣

〈ψ̃z0 |e−iHtg2
∆1

(H)|ψ̃z0〉
∣

∣

∣

∣

≤ ‖ψ̃z0‖2

we conclude that there exists C1 > 0 such that the inequality Eq. (3.51) is satisfied. We
note that, since the support of ψ̃z0 is compact and is determined by the cutoff function
χ(x), the constant C1 is independent of the parameters Γ and r0 (or Γ and E0).

We proceed by observing that Eq. (3.51) implies the following inequality

∣

∣

∣

∣

∫ ∞

0
dλ′

1
λ′ − λ− iε

|〈ψ̃z0 |g∆1(H)|λ′〉H |2
∣

∣

∣

∣

=
∣

∣

∣

∣

〈ψ̃z0 |g∆1(H)
1

H − λ− iε
g∆1(H)|ψ̃z0〉

∣

∣

∣

∣

=

=
∣

∣

∣

∣

∫ ∞

0
dt 〈ψ̃z0 |e−i(H−λ−iε)tg2

∆1
(H)|ψ̃z0〉

∣

∣

∣

∣

≤
∫ ∞

0
dt

∣

∣

∣〈ψ̃z0 |e−iHtg2
∆1

(H)|ψ̃z0〉
∣

∣

∣ ≤ C1‖ψ̃z0‖2

(3.56)
Suppose that the length of the interval ∆1 is l∆1 . Choose a second interval ∆2 centered
at E0 and having a length l∆2 = l∆1/2. In this case there exists a constant C3 > 0 such
that, for every λ ∈ ∆2, and every λ′ ∈ supp[1− g∆1(H)] we have |λ− λ′| > 1/C3 and so

∣

∣

∣

∣

∫ ∞

0
dλ′

1
λ′ − λ− iε

|〈ψ̃z0 |(1− g∆1(H))2|λ′〉H |2
∣

∣

∣

∣

≤ C3‖ψ̃z0‖2 (3.57)

Combining Eq. (3.56) and Eq. (3.57) we get
∣

∣

∣

∣

∫ ∞

0
dλ′

1
λ′ − λ− iε

|〈ψ̃z0 |λ′〉H |2
∣

∣

∣

∣

≤ C4‖ψ̃z0‖2, λ ∈ ∆2 (3.58)

Finally, we choose an interval ∆3 ⊂ ∆2, centered at E0, with length l∆3 < 1/C4. If we
now take the interval ∆ such that supp[χ∆,E0 ] ⊂ ∆3 the inequality Eq. (3.50) is satisfied
and hence also the inequality Eq. (3.35). Note that the choice of ∆ is independent of r0
and, hence, the estimate of the term ‖〈x〉2σWg∆(H̃0)‖ is completed.

The rest of the estimates needed in order to show that conditions (a)-(c) hold for
W are easier to prove. A bound on the last term on the r.h.s. of Eq. (2.9) and on the
l.h.s. of Eq. (3.6) is a consequence of a combination of the observation that, as shown in
Subsection 3.4 below, H̃0 satisfies condition (V) of the Costin-Soffer theorem, the fact that
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W is compact and that, as an integral operator, W has a kernel with compact support on
R3 ×R3. Indeed we find that

〈x〉σW (H̃0 + c)−1〈x〉−σ = [〈x〉σW 〈x〉−σ][〈x〉σ(H̃0 + c)−1〈x〉−σ]

and

〈x〉σW (H̃0 + c)−1〈x〉σ = [〈x〉σW 〈x〉σ][〈x〉−σ(H̃0 + c)−1〈x〉σ]

are both a product of a bounded operator and a compact operator.
In order to see that the Fermi golden rule condition in Eq. (3.7) is satisfied we first

note that

W |ψ̃z0〉 = H ′|ψ̃z0〉

and so

Γ(λ, ε) = πε2〈ψ̃z0 |W (ε)δ(H̃0 − λ)(I − P0)W (ε)|ψ̃z0〉‖ψ̃z0‖−2 =

= π〈ψ̃z0 |H ′δ(H̃0 − λ)(I − P0)H ′|ψ̃z0〉‖ψ̃z0‖−2 = π|〈ψ̃z0 |H ′|λ〉|2‖ψ̃z0‖−2

where |λ〉 is a continuous spectrum generalized eigenvector for H̃0. With the help of Eq.
(3.32) we obtain

Γ(λ) = π|〈ψ̃z0 |λ〉H〈ψ̃z0 |H ′|ψ̃z0〉(G(λ))−1|2‖ψ̃z0‖−2

resulting in Γ > 0, which shows that the Fermi golden rule condition in Eq. (3.7) is
satisfied. Note that, in particular, Eq. (3.34) implies the following simple formula for
λ = E0

Γ(E0) = π|〈ψ̃z0 |E0〉H〈ψ̃z0 |H ′|ψ̃z0〉|2‖ψ̃z0‖−6

3.3 Comments on the estimates of ‖〈x〉σWg∆(H̃0)‖.
We discuss here briefly the basic mechanism enabling the proof of the estimates above.

A first, perhaps surprising, observation is that the r.h.s. of the inequality in Eq. (3.37) is
made small by the integration on B1 where we have χ(x) = 1, hence the exact details of
the cutoff function are irrelevant.

A second essential observation is that Eq. (3.39) is the fundamental identity which is
needed in order to make the r.h.s. of Eq. (3.37) small. The l.h.s. of this identity appears
in both the numerator and denominator of Eq. (3.37). The fact that in the numerator
this integral is multiplied by Γ2, and that Γr0 is bounded (in fact vanishing) r0 goes to
infinity, is crucial.

The last fundamental observation concerns the origin of the identity Eq. (3.39). This
identity results from the fact that, since the quantity 〈ψ̃z0 |H ′|ψ̃z0〉 (which is also the
denominator of the interaction W ) is real, there must be a mechanism for the cancelation
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of the first term on the r.h.s. of Eq. (3.40) which is purely imaginary. The mechanism
for the cancelation of all imaginary terms on the r.h.s. of Eq. (3.40) provides us with the
crucial identity Eq. (3.39). It is readily seen that the mechanism mentioned above depends
neither on the exact details of the cutoff function nor on the details of the potential, as
long as the support of the potential is compact and the Gamow vector is in the form of
Eq. (3.16) in the region outside of the support of the potential (there is another possible
form for the Gamow state solution in the region outside of the support of the potential;
see Section 5 below).

We note that the quantity 〈ψ̃z0 |H ′|ψ̃z0〉 is well defined and real precisely because the
multiplication of the Gamow vector ψG

z0
(x) by the cutoff function χ(x) renders the resulting

ψ̃z0(x) an element of the Hilbert space (an L2 function). Hence, it is the cutoff procedure
applied to the Gamow vector which directly provides us with the desired estimates.

3.4 Conditions on H̃0

In this section we prove that H̃0 satisfies conditions (I)-(IV) of the Soffer-Costin
theorem. Here the main task is to prove the local decay estimate Eq. (3.4) for the
Hamiltonian H̃0. This is done by first proving that H̃0 satisfies a Mourre estimate [Mo].
Let the generator of dilations A be given by

A =
1
2
(D · x + x ·D) (3.59)

where D = −i∇x. Denote

adn
A(H) = [· · · [H, A], A], . . . A] (3.60)

In order to obtain the local decay estimate for H̃0 we need to show that it satisfies two
conditions. The first is a boundedness condition

g∆(H̃0)adn
A(H̃0)g∆(H̃0) ≤ C (3.61)

for n = 1, 2. The second is the Mourre estimate

g∆(H̃0)i[H̃0, A]g∆(H̃0) ≥ θ(g∆(H̃0))2 (3.62)

for some θ > 0. Validity of the local decay estimate, Eq. (3.4) for H̃0 is a consequence of the
validity of the two conditions Eq. (3.61), (3.62) (see for example [HSS]). We observe also
that the Mourre estimate for H̃0 in the interval ∆ ensures that the points in σpp(H̃0) ∩∆
are seperated from each other and hence there must exist an interval ∆ containing E0
but no other eigenvalue of H̃0. In addition, the Hη regularity of H̃0 follows from the Hη

regularity of H which in turn is a result of assumptions (V1)-(V4) on the potential V .
We prove first the Mourre estimate Eq. (3.62). Noting that H̃0 = H −W , we have

g∆(H̃0)i[H̃0, A]g∆(H̃0) = g∆(H̃0)i[H −W,A]g∆(H̃0) =

= g∆(H̃0)i[H, A]g∆(H̃0)− g∆(H̃0)i[W,A]g∆(H̃0)
(3.63)

19



Denote H0 = −∆x. In order to estimate the first term on the r.h.s. of Eq. (3.63) we
calculate

i[H, A] = 2H0 − x∇xV = 2H − 2V − x∇xV = 2H̃0 + 2(W − V )− x∇xV (3.64)

Hence, we need to obtain an estimate of the operator g∆(H̃0)(2(W − V )− x∇xV )g∆(H̃0).
Since W is compact we conclude that g∆(H̃0)Wg∆(H̃0) is compact. Furthermore, we have

g∆(H̃0)(2V + x∇xV )g∆(H̃0) =
[

g∆(H̃0)〈D〉2
]

〈D〉−2(2V + x∇xV )〈D〉−2
[

〈D〉2g∆(H̃0)
]

(3.65)
The operator

〈D〉−2(2V + x∇xV )〈D〉−2 = (1−∆x)−1(2V + x∇xV )(1−∆x)−1 (3.66)

is compact. Moreover, the operator

〈D〉2g∆(H̃0) = (1−∆x)g∆(H̃0) = (1 + H̃0 + W − V )g∆(H̃0) (3.67)

is bounded. Denoting K1 = g∆(H̃0)(2(W − V )− x∇xV )g∆(H̃0) we conclude that

g∆(H̃0)i[H, A]g∆(H̃0) = 2H̃0g2
∆(H̃0) + K1 (3.68)

where K1 is compact.
For the second term on the r.h.s. of Eq. (3.63) we have

g∆(H̃0)WAg∆(H̃0) = g∆(H̃0)W 〈x〉2〈x〉−2A〈D〉−2〈D〉2g∆(H̃0) (3.69)

but the operator 〈x〉−2A〈D〉−2 is compact and 〈D〉2g∆(H̃0) is bounded (see Eq. (3.67)).
Furthermore, the estimates in Subsection 3.2 assures us that operators of the form
〈x〉σWg∆(H̃0), σ ≥ 0 are bounded (with the norm going to zero when the parameter
r0 goes to infinity). We conclude that g∆(H̃0)i[W,A]g∆(H̃0) is compact. This result,
together with Eq. (3.68) and Eq. (3.63) give the Mourre estimate

g∆(H̃0)i[H̃0, A]g∆(H̃0) = 2H̃0g2
∆(H̃0) + K (3.70)

where K is compact. Eq. (3.62) is an immediate consequence of Eq. (3.70). For n = 1 Eq.
(3.61) is also a direct consequence of Eq. (3.70). Furthermore, Following the general steps
of the analysis above with i(adA(H̃0)) = i[H̃0, A] replaced by i(ad2

A(H̃0)) = i[[H̃0, A], A] =
4D2 + (x∇x)2V − i[[W,A], A] results in the estimate Eq. (3.61) for n = 2. Thus, the
Hamiltonian H̃0 satisfies both the condition Eq. (3.61) (with n = 1, 2) and the condition
Eq. (3.62). With the Mourre estimate proved for the Hamiltonian H̃0, a local decay
estimate in the form of Eq. (3.4) can be proved for H̃0 by using techniques based on the
Mourre estimate, see for example [JMP], [SS], [HSS] or Appendix D in [SW]. This proves
that condition (IV) is satisfied by H̃0.
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It is easier to show that H̃0 satisfies the other conditions of the Costin-Soffer theorem.
Condition (I) follows from the compactness of W and the self-adjointness of H. Condi-
tion (II) is trivial and we assume that condition (III) holds. Condition (V) follows from
the compactness of W and the fact that H is a self-adjoint Schrödinger operator with a
spectrum bounded from below. We use the second resolvent formula to obtain

〈x〉σ(H̃0 + c)−1〈x〉−σ = 〈x〉σ(H + c)−1〈x〉−σ

− [〈x〉σ(H + c)−1W 〈x〉−σ][〈x〉σ(H̃0 + c)〈x〉−σ]
(3.71)

Thus

‖〈x〉σ(H̃0 + c)−1〈x〉−σ‖ ≤ ‖〈x〉σ(H + c)−1〈x〉−σ‖
+ ‖〈x〉σ(H + c)−1W 〈x〉−σ‖‖〈x〉σ(H̃0 + c)〈x〉−σ‖

(3.72)

and

(

1− ‖〈x〉σ(H + c)−1W 〈x〉−σ‖
)

‖〈x〉σ(H̃0 + c)〈x〉−σ‖ ≤ ‖〈x〉σ(H + c)−1〈x〉−σ‖ (3.73)

Now, the properties of H mentioned above imply that a c can be chosen such that
‖〈x〉σ(H + c)−1〈x〉−σ‖ is as small as necessary. Hence we can choose c such that

‖〈x〉σ(H + c)−1W 〈x〉−σ‖ = [‖〈x〉σ(H + c)−1〈x〉−σ][〈x〉σW 〈x〉−σ‖] < 1/2

This can be done since W is compact with compact support in R3 × R3, therefore
〈x〉σW 〈x〉−σ is compact. In this case we have

‖〈x〉σ(H̃0 + c)〈x〉−σ‖ ≤ 2‖〈x〉σ(H + c)−1〈x〉−σ‖ (3.74)

and condition (V) holds for H̃0 since 〈x〉σ(H+c)−1〈x〉−σ can be made as small as needed by
an appropriate choice of c. Thus conditions (I)-(V) hold for H̃0 and the proof of Theorem
A is complete.

4. Pairs of quasimodes corresponding to a resonance

4.1 A symmetry in the estimates

We notice an interesting symmetry in the estimates of the quantity ‖〈x〉σWg∆(H̃0)‖.
Turning back to Eq. (3.40) we consider the complex conjugate of this equation. We find
that
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〈ψ̃z0 |H ′|ψ̃z0〉 = iΓ
∫

B1

d3x |ψG
z0

(x)|2

− 4π|F1|2
∫ R2

R1

dr eik0rχ(r)
[

d2χ(r)
dr2 − 2ik0

dχ(r)
dr

− iΓχ(r)
]

e−ik0r =

= iΓ
∫

B1

d3x |ψG
z0

(x)|2

− 4π|F1|2
∫ R2

R1

dr χ(r)
[

d2χ(r)
dr2 − 2ik0

dχ(r)
dr

− iΓχ(r)
]

e2|Imk0|r

(4.1)

We readily observe that, starting with Eq. (4.1) instead of Eq. (3.40) the analysis leading
to the important identity Eq. (3.39) does not change and we again arrive at the same
identity. However, the right hand side of Eq. (4.1) can be obtained if we assume that in
the region outside of the support of the potential, and in particular in B2\B1 the Gamow
state solution has the form

ψG
z0

(x) = F2
e−ik0r

r
, x ∈ R\B1, r = |x| (4.2)

Moreover, a replacement of ψG
z0

(x) in Eq. (3.16) by ψG
z0

(x) does not effect any of the
following estimates and again we arrive at Eq. (3.37). An immediate conclusion resulting
from these considerations is that if we find a Gamow vector solution of the eigenvalue
problem for H which has the form of Eq. (4.2) in the region outside the potential we can
apply to it the cutoff procedure and produce a quasimode satisfying all of the estimates
above. By our main theorem such a quasimode will also correspond to a resonance. Since
z0 = k

2
0 is a point in the upper half-plane we see that there exist points above the real axis

which may be associated with a resonance via the quasimode construction procedure.
In the next subsection we introduce a simple example illustrating the current discus-

sion. In this example, a scattering problem with a square barrier potential, the nature of
the points in the upper half-plane which are associated with a resonance by the quasimode
construction is clearly demonstrated.

4.2 An example - Gamow vectors, quasimodes and resonances for a square
barrier potential problem
The problem of the construction of Gamow state solutions for various quantum me-

chanical models was addressed many times over the years. In this subsection we illustrate
the discussion of the previous subsection by considering a simple example. This relatively
simple model, a scattering problem with a square barrier potential, was analyzed, e.g., by
M. Gadella and R. de la Madrid in [dMG]. The two authors originally consider an eigen-
value equation in three dimensions for a Schrödinger operator with a spherically symmetric
square barrier potential. The Hamiltonian is

H = −∆x + V (x) (4.3)
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with

V (x) = V (r) =

{ 0 ,0 < r < a
V0 , a < r < b
0 , b < r < ∞

, r = |x| (4.3′)

the problem is reduced, for zero angular momenta (s-wave) to a one dimensional one with
a potential which is infinite for r < 0. In this case we can consider only the radial part
Hr = −∆r + V (r). The eignvalue equation then becomes

(

−1
r

d2r
dr2 r + V (r)

)

φλ(r) = λφλ(r) (4.4)

A generalized eigenvector corresponding to a generalized eigenvalue λ belonging to
the continuous spectrum of H is given by φλ(r) = ψλ(r)/r where

ψλ(r) =







α(k) sin(kr), 0 ≤ r < a
α2(k)eiQr + β2(k)e−iQr, a ≤ r < b
F1(k)eikr + F2(k)e−ikr, b ≤ r

, k =
√

λ (4.5)

with

Q =
√

k2 − V0 (4.6)

The coefficients α, α2, β2, F1, F2 satisfy the following conditions at the various boundary
points

α2eiQa + β2e−iQa = α sin(ka)

iQ(α2eiQa − β2e−iQa) = α k cos(ka)

F1eikb + F2e−ikb = α2eiQb + β2e−iQb

ik(F1eikb − F2e−ikb) = iQ(α2eiQb − β2e−iQb)

(4.7)

From these conditions we get

α2(k) =
1
2
e−iQa(sin(ka) +

k
iQ

cos(ka))α(k)

β2(k) =
1
2
eiQa(sin(ka)− k

iQ
cos(ka))α(k)

F1(k) =
1
4
e−ikb

(

eiQ(b−a)(1 +
Q
k

)(sin(ka) +
k
iQ

cos(ka))

+e−iQ(b−a)(1− Q
k

)(sin(ka)− k
iQ

cos(ka)
)

α(k)

F2(k) =
eikb

4

(

eiQ(b−a)(1− Q
k

)(sin(ka) +
k
iQ

cos(ka))

+e−iQ(b−a)(1 +
Q
k

)(sin(ka)− k
iQ

cos(ka))
)

α(k)

(4.8)
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The S-matrix for the problem is given by

S(λ) = −F1(k)
F2(k)

(4.9)

with k =
√

λ. The condition for finding a resonance pole at the complex point z0 = E0−iΓ
is the vanishing of the coefficient F2(k) at k0 =

√
z0. A Gamow vector solution for the

problem is then found by analytically continuing the generalized state ψλ in Eq. (4.5)
to the point k0 =

√
z0. At this point the S-matrix has a pole and, since F2(k0) = 0, in

the region outside of the support of the potential the resulting Gamow vector ψG
z0

has the
form ψG

z0
(r) = F1(k0) exp(ik0r)/r. Multiplying ψG

z0
by a cutoff function χ(r) satisfying the

conditions in Eq. (2.2) we obtain the quasimode ψ̃z0 for which, if r0 is large enough, we
can apply Theorem A.

Instead of analytically continuing ψλ in the lower half-plane to the point k0 =
√

z0

consider the analytic continuation of ψλ in the upper half-plane to the point k0 =
√

z0.
Denote the resulting state by ψG

z0
. At the point k0 we have F1(k0) = 0 and we see

from Eq. (4.9) that this corresponds to a zero of the S-matrix in the upper half-plane.
Furthermore, from Eq. (4.5) we see that, in the region beyond the support of the potential,
ψG

z0
(r) = F2(k0) exp(−ik0r)/r, which has exactly the form of the r.h.s. of Eq. (4.2). Hence,

by applying the cutoff procedure we produce the cut state ψ̃z0 which corresponds to the
same resonance.

Recapitulating, it is possible to construct a quasimode by cutting a Gamow vector
solution corresponding to a pole of the S-matrix in the lower half-plane, then decomposing
the Hamiltonian and proving the estimates as shown above. Theorem A, together with
the Soffer-Costin-Weinstein theorem, then states that such a quasimode is associated with
a particular resonance of the scattering problem. On the other hand, we can obtain a
different quasimode by cutting a solution corresponding to a zero (paired with the pole)
of the S-matrix in the upper half-plane. The quasimode we obtain in this way can be
used for a decomposition of the Hamiltonian that satisfies the same estimates as the one
corresponding to the pole. This quasimode is also associated with a particular resonance,
in fact to the same resonance as the other quasimode.
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