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In the previous lecture, we studied two important Boolean function complexity measures: decision
tree depth and certificate complexity. In this lecture, we introduce four more measures—sensitivity,
block sensitivity, degree, and approximate degree—and study how they relate to each other. Ulti-
mately, we will show that all of these measures are equivalent up to polynomial factors, but in this
lecture, we omit a lower bound for sensitivity.

1 Decision tree complexity versus certificate complexity

Recall that the decision tree complexity D(f) of a Boolean function f is the depth of the smallest
decision tree computing f . The decision tree complexity is also called the deterministic query
complexity, since it is equivalently the fewest number of queries a deterministic algorithm needs to
make in order to compute f .

Certificate complexity captures the non-deterministic analog of decision tree complexity. Recall
that a certificate for an input x ∈ {0, 1}n to a Boolean function f is a set S ⊆ [n] of indices such
that f is constant on all inputs that match x on S. Notationally, S is a certificate for x if y|S = x|S
implies f(y) = f(x). The certificate complexity of f at x is the size of the smallest certificate
for x. The 1-certificate complexity C1(f) is then defined as C1(f) := maxx:f(x)=1C(f, x), and the
0-certificate complexity C0(f) is defined analogously as C0(f) := maxx:f(x)=0C(f, x). Finally, the
certificate complexity C(f) of f is defined as C(f) := max{C0(f), C1(f)}.

It should be clear that C(f) ≤ D(f), since the root-to-leaf path in the decision tree computation of
an input x immediately gives a certificate for x. It is natural to wonder how large the gap between
certificate and decision tree complexity can be. Could it be, for example, that D(f) = Ω(

√
n) and

C(f) = O(log n) for some function f? The next theorem says the answer is no: D(f) ≤ C(f)2 for
all Boolean functions f .

Theorem 1. For every Boolean function f : {0, 1}n → {0, 1},

D(f) ≤ C0(f) · C1(f).

Proof. Let k = C0(f) and let ℓ = C1(f). As we saw last time, we may write f as a k-CNF f =
!

Ci

and also as an ℓ-DNF f =
"
Ti.

Observe that every clause Ci must share at least one variable with every term Tj . Indeed, if
Ci(x) = 0 for some x, then

"
Ti(x) = f(x) = 0. In other words, any clause being zero implies that

all terms are zero.
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We now demonstrate how to evaluate f in at most ℓk adaptive queries to x. First, we query the
at-most-k variables in C1 leaving us with a function f ′ on fewer variables after substituting the
values for the variables. Since every term Ti shares at least one variable with C1, after simplifying
the terms knowing the values of the variables in C1, every term is now is a conjunction of at most
ℓ− 1 literals. Thus, C1(f

′) ≤ ℓ− 1. Inductively, we can evaluate f ′ in at most (ℓ− 1)k additional
queries, and thus we use ℓk queries in total.

Since decision tree depth captures the number of queries needed by a deterministic algorithm for f
and certificate complexity captures the number of queries needed by a nondeterministic algorithm
for f , the previous theorem may be considered a “P = NP ∩ co-NP” type of result for query
complexity.

2 Sensitivity

Definition 2. Let f : {0, 1}n → {0, 1} be a Boolean function and let x ∈ {0, 1}n. The sensitivity
of f at x is the number of positions i ∈ [n] such that flipping the ith bit of x changes the output
f(x). The sensitivity s(f) of f is the maximum sensitivity s(f, x) over all points x.

Informally, the sensitivity of a function f measures how unstable the output of f is to small
perturbations to the input. Here are some examples:

• The sensitivity of ANDn is n, since at x = 1n, flipping any bit in x changes the value of
ANDn(x).

• Similarly, the sensitivity of ORn is n, since at x = 0n, flipping any bit in x changes the value
of ORn(x).

• For all x ∈ {0, 1}n, the sensitivity of PARITYn at x is n.

We now prove a simple relationship between sensitivity and certificate complexity. In the proof, ei
is the Boolean vector which is 1 at position i and 0 elsewhere.

Proposition 3. For every Boolean function f ,

s(f) ≤ C(f).

Proof. If f(x⊕ ei) ∕= f(x) for i ∈ [n], then i must be present in every certificate for x. The set of
all such i has size s(f, x), and so s(f, x) ≤ C(f, x).

3 Degree of polynomial representations

A polynomial representation of a Boolean function f : {0, 1}n → {0, 1} is a polynomial P : Rn → R
which agrees with f on Boolean inputs. For example, we can represent AND3 by

(x1, x2, x3) *→ x1x2x3
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and OR3 by
(x1, x2, x3) *→ x1 + x2 + x3 − x1x2 − x1x3 − x2x3 + x1x2x3.

Note that both examples are multilinear : no variable appears with an exponent larger than one. In
general, a polynomial representation of a Boolean function never needs exponents larger than one
since xki = xi whenever xi ∈ {0, 1} and k ∕= 0. Moreover, this multilinear representation is unique,
which we will now prove.

Proposition 4. Every Boolean function f : {0, 1} → {0, 1} has a unique multilinear representation.

Proof. First we show that there exists a multilinear representation of f . Inductively, there are multi-
linear polynomial representationsQ andR for (x1, . . . , xn−1) *→ f(x1, . . . , xn−1, 0) and (x1, . . . , xn−1) *→
f(x1, . . . , xn−1, 1), respectively. Thus, we may write

P (x1, . . . , xn) = xnR(x1, . . . , xn−1) + (1− xn)Q(x1, . . . , xn−1),

which is multilinear.

We now show uniqueness. Suppose P and P ′ are both multilinear representations of f so that
(P − P ′)(x) = 0 for all x ∈ {0, 1}n. And suppose to obtain a contradiction that P − P ′ is not
identically zero and therefore contains some monomial. Let S ⊆ [n] be a minimal set of indices such
that the monomial

#
i∈S xi appears in P−P ′ with nonzero coefficient. Notice that (P−P ′)(χS) ∕= 0,

a contradiction, and therefore, P − P ′ is identically zero.

(Appealing to linear algebra, we obtain an even simpler proof: The set of multilinear polynomials
over R forms a 2n dimensional vector space, and there is an obvious orthonormal basis of degree
2n which is just the set of monomials.)

That Boolean functions admit unique multilinear representations gives rise to another natural
complexity measure, namely, the degree of the multilinear representation.

Definition 5. The degree deg(f) of f is the degree of the unique multilinear polynomial represen-
tation of f .

We now show that the degree of a Boolean function is at most its decision tree complexity.

Theorem 6. For every Boolean function f ,

deg(f) ≤ D(f).

Proof. Fix a decision tree for f . For each leaf ℓ of the decision tree, define Pℓ the polynomial which
equals one on inputs that reach ℓ and 0 otherwise. That is, to form Pℓ we multiply the terms xi
for each internal node i for which we went “right” on the way to ℓ and (1 − xi) for each internal
node i for which we went “left” on the way to ℓ.

Now define P (x) :=
$

ℓ TℓPℓ(x), where Tℓ is the label of the leaf ℓ. This multilinear polynomial P
represents f and has degree maxℓ{deg(Pℓ(x))} = D(f).

The following theorem is was proved by Nisan and Szegedy [4] in 1994.
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Theorem 7 (Nisan and Szegedy [4]). For every Boolean function f ,

deg(f) ≥
%

s(f)/2.

Before proving Theorem 7, we will a few ingredients. First, we state an inequality by Markov.1

Theorem 8 (Markov’s Inequality). If q : R → R is a polynomial of degree d such that b1 ≤ q(x) ≤ b2
whenever a1 ≤ x ≤ a2, then the derivative of Q satisfies |q′(x)| ≤ d2(b2 − b1)/(a2 − a1) whenever
a1 ≤ x ≤ a2.

Markov’s inequality will not be immediately useful to us as stated because its hypothesis requires
us to know something about all real x within a certain range, whereas we will only be able to reason
about integer x within a certain range. However, it is not hard to use Markov’s inequality to prove
the following corollary pertaining to integer values.

Corollary 9. If q : R → R satisfies

1. b1 ≤ q(n) ≤ b2 for all n ∈ {0, 1, . . . ,m}, and

2. for some real x ∈ [0,m], the derivative of q satisfies |q′(x)| ≥ c,

then deg(q) ≥
%

cm/(c+ b2 − b1).

Another key component in our proof is the “method of symmetrization,” attributed to Minksy and
Papert [2]. For a polynomial p : Rn → R, the symmetrization psym : Rn → R averages p over all
inputs:

psym(x1, . . . , xn) :=
1

n!

&

π∈Sn

p(xπ(1), . . . , xπ(n)).

Note that deg(psym) ≤ deg(p).

The polynomial psym is still a multivariable polynomial, which prevents us from applying Markov’s
inequality to it directly. Thus, the final ingredient allows us to reason about the degree of a
univariate polynomial rather than a multivariate one.

Lemma 10 (Minsky and Papert [2]). For every multilinear polynomial p : Rn → R there is a
univariate polynomial q : R → R such that deg(q) ≤ deg(p) and

psym(x1, . . . , xn) = q (x1 + · · ·+ xn)

for all x ∈ {0, 1}n.
1This inequality is not to be confused with the more famous “Markov’s inequality” about probabilities of non-

negative random variables. The Markov is the same—Andrey Markov—although his lesser-known brother Vladimir
Markov generalized the inequality to higher order derivatives, and so the result is sometimes called the “Markov
brothers’ inequality.”
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Proof. Define

Pk(x) :=
&

S∈([n]
k )

'

i∈S
xi

to be the sum of all monomials of degree k. Letting d be the degree of p, by induction we may
write

psym(x) = c0 + c1P1(x) + · · ·+ cdPd(x),

with ci ∈ R, leveraging the symmetry of psym. Now notice that Pk(x) =
(|x|
k

)
and define the

univariate polynomial q by

q(t) := c0 + c1

*
t

1

+
+ · · ·+ cd

*
t

d

+
,

which satisfies psym(x) = q(|x|).

We are now ready to prove Theorem 7.

Proof of Theorem 7. We may assume that argmaxx s(f, x) = 0 and that f(0) = 0. Let g be the
restriction of f to its m sensitive bits on input 0. That is, g = f |S , where S := {i : f(ei) = 1}
and |S| = m. Let p be the multilinear representation of g and let q : R → R be the univariate
polynomial promised by Lemma 10 with respect to psym.

Notice that q(1) = 1 since g is sensitive on every input. Also, q(0) = 0, and so by the mean
value theorem there is some x ∈ [0, 1] such that q′(x) ≥ 1. Finally, by Corollary 9, we have
deg(f) ≥ deg(q) ≥

%
m/2 =

%
s(f)/2.

4 Approximate Degree

Definition 11. Let f be a Boolean function. A real-valued polynomial p approximates f if for every
x ∈ {0, 1}n, it holds that |p(x) − f(x)| ≤ 1/3. The approximate degree ,deg(f) is the minimum
degree of p over all polynomials p that approximate f .

The constant 1/3 is inconsequential; we may replace it with any other constant in (0, 1/2) and the
results will only change by a constant factor.

Clearly deg(f) ≤ ,deg(f) since the multilinear representation approximates f . However, ,deg(f) is
also not too small with respect to the other measures.

Theorem 12 (Nisan and Szegedy [4]). For every Boolean function f ,

,deg(f) ≥
%

s(f)/6.

The proof follows along exactly the same lines as that of Theorem 7.
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5 Block sensitivity

Here we use the notation xB for some B ⊂ [n] to mean x with the coordinates in B flipped. A
sensitive block for f at x is a set B ⊆ [n] such that f(x) ∕= f(xB).

Definition 13. The block sensitivity bs(f, x) of f at x is the maximum number of disjoint sensitive
blocks for f at x.

Block sensitivity was first studied by Nisan [3] in 1991, where he proved the following theorem.

Theorem 14 (Nisan [3]). For every Boolean function f ,

bs(f) ≥
%

C(f).

Proof. First we show that if B is a minimal sensitive block of f at some x, then |B| ≤ s(f). Indeed,
if B is a minimal sensitive block, then f(xB) ∕= f(x) and f(xC) = f(x) for all proper subsets
C ⊊ B. Thus, s(f, xB) ≥ |B|, since any flipping any bit in B of xB is equivalent to flipping some
|B|− 1 bits of x. It follows that s(f) ≥ s(f, xB) ≥ |B|.

Let x be any input and let B1, . . . , Bm be disjoint sensitive blocks such that m = bs(f, x). For each
i ∈ [m], replace Bi with a minimal subset -Bi ⊆ Bi such that -Bi is a sensitive block. We claim that
S :=

.m
i=1

-Bi is a certificate for f at x.

Suppose to obtain a contradiction that for some input y we have x|S = y|S but f(x) ∕= f(y). Let
B∗ = {i : xi ∕= yi}. Notice that f(xB

∗
) = f(y) ∕= f(x), and so B∗ is a sensitive block. Also, by

definition, B∗ ∩ S = ∅. Thus -B1, . . . , -Bm, B∗ are disjoint sensitive blocks for f at x, contradicting
that m = bs(f, x).

Now if m ≥
%

C(f), we are done. Otherwise, there is some i such that | -Bi| ≥
%

C(f), in which
case, bs(f, xBi) ≥

%
C(f).

We also have the following theorem, similar to Theorem 7, which we state without proof. (The
proof uses similar ideas to those we have already seen.)

Theorem 15 (Nisan and Szegedy [4]). For every Boolean function f ,

deg(f) ≥
%

bs(f)/2,

and
,deg(f) ≥

%
bs(f)/6.

6 Conclusion and the Sensitivity Conjecture

At this point, we have almost shown that decision tree complexity, certificate complexity, sensitivity,
block sensitivity, degree and approximate degree are all within polynomial factors of each other.
For example, we have shown that deg(f) ≥

%
bs(f)/2 in Theorem 15, and also that deg(f) ≤

D(f) ≤ (C(f))2 ≤ bs(f) by Theorems 1 and 14. However, we cannot yet show, to take another
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example, that sensitivity is bounded below by a polynomial in decision tree complexity. The circle
would be complete by showing that sensitivity is bounded below by a polynomial in any of the
other measures, a statement known as the “Sensitivity Conjecture.” Nisan and Szegedy [4] put
forth this conjecture in 1994, and it remained open until 2019, when Hao Huang [1] settled it with
a remarkable proof.

Theorem 16. For every Boolean function f ,

s(f) ≥
%

deg(f).

Thus, in fact, every pair of Boolean function complexity measures in this lecture are within a
polynomial factor of each other for all Boolean functions f .
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