
Lecture 2: Lower Bounds for Formula Size
Topics in Algorithms and Complexity Theory (Spring 2020)

Rutgers University
Swastik Kopparty

Scribe: Adeeb, Chaitanya

1 Boolean circuits

We recall that a boolean formula can be represented as a tree-shaped circuit, and we associate
the size of that formula with the number of leaves in the circuit. The size of the circuit depends
on basis chosen (i.e. functions m : {0, 1}n → {0, 1} such as ∨,∧,⊕, etc. allowed as gates in our
formulas). When we allow gates computing any such function with 2 bits as input, we call this the
full binary basis.

Example: Consider formulas in n variables labelled x1, . . . , xn. In the full binary basis, it is clear
to us x1⊕· · ·⊕xn has size n. However, if we limit to {∨,∧,¬} as our basis, then this formula takes
size n2.

2 Nechiporuk’s Lower Bound

The technique discussed in this section gives a lower bound of Ω
(

n2

logn

)
on formula size by relating

to the contribution of a single variable to the total size of the formula. We demonstrate this by
examining a specific application of the method. A small note for notation convention - if a ∈ N,
then [a] = {1, . . . , a}.

Definition 1. Suppose we have input z1, z2, . . . , zb, where each zi ∈ {0, 1}a and n = ab. Then we
define ELEMENT-DISTINCTNESS (ED) as

ED(z1, . . . , zb) =

{
1 if all zi distinct

0 otherwise

We start by considering any formula computing ED among b inputs of length a. Let size s be the
number of leaves in the corresponding tree-shaped circuit. We refer to each leaf as zi,j , which reads
as “the jth bit of input zi,” where i ∈ [b]. From this, we define s1, . . . , sb as

si = {# of leaves labelled zi,j | j ∈ [a]}

By basic counting, it is apparent that
∑b

i=1 si = s.

The idea behind Nechiporuk’s argument comes down to examining a restriction of our boolean
formula by considering only one of the input variables while holding all others constant. Let

1

z2, . . . , zn be constant a bit values. We can “push” these parts to be smaller and smaller since they
are constant on all input, and all we really need to do is compare these smaller, constant parts to
si bits. So, ED(z1, y2, . . . , yb) where each yi is a constant input and can be simplified. Hence, size
of formula is s1. This argument works for all si.

How many different formulas do we get when we vary y2, . . . , yb ∈ {0, 1}a where each formula
computes f(x) = ED(x, y2, . . . , yb)?

Since the function behaves same on every set of distinct b− 1 numbers chosen from all possible 2a

numbers, and in all other sets of size b− 1 at least one number is repeated, so the value of ED will
always be 0 regardless of input. Hence, the number of unique formulas is

(
2a

b−1
)

+ 1.

Observe that the number of rooted binary trees given a full binary basis is 2O(s1). This yields the
following:

of formulas of size s1 on a inputs 6 2O(s1)as1

Note: We have a useful inequality for binomial coefficients.(a
b

)b
6

(
a

b

)
6
(e · a

b

)b
Expanding from our earlier bound on the number of formulas, we obtain

2O(s1)as1 >

(
2a

b− 1

)
>

(
2a

b− 1

)b−1

Then

s1 (log a + O(1)) > (b− 1) log

(
2a

b− 1

)
⇒ s1 >

(b− 1) (a− log(b− 1))

log a +O(1)

The above holds for all si, of which there are b. From this, we obtain

s > b

(
(b− 1) (a− log(b− 1))

log a +O(1)

)
≈ b2a

log a

We note that the above is a useful bound only if a < b, so we “set” a to be a lot larger than log b.
Recall that ab = n. We can set b = n/10 log n and a = n/b = 10 log n. Thus, if b � 1, then
a� log b. Going back to our expression, we get

s >
1

200
· n2

log2 n
· a log n

log log n
> Ω

(
n2

log n · log logn

)

2

The method above is useful for analyzing other problems in formula size. Let f : {0, 1}k+2k → {0, 1}
be the Addressing Function, where f(i, x) = xi, where i ∈ {0, 1}k and x ∈ {0, 1}2k . We view i as
an integer in the range

[
2k
]

which denotes a bit in x. Thus xi is the ith bit in x. We can extend
this into the Generalized Addressing Function GAF : {0, 1}n → {0, 1}, where n = log b + ba + 2a.
Then

GAF (u, i1, i2, . . . , ib, x) = xiu

where u ∈ {0, 1}log b is viewed as an integer in [b] and i1, . . . , ib ∈ {0, 1}a are viewed as integers in
[2a]. The integer u is information as to which among i1, . . . , ib to pick, which we call iu. Thus xiu
is the ithu bit of x.

Homework (to be turned in): Prove the following claim: Let s be the size of a formula
computing GAF . Show that:

s > Ω

(
n2

log n

)
(Hint: Choose an appropriate setting for a, b to get the bound)

3 AC0 Circuits

AC0 is the class of constant depth circuits with a basis of ∧,∨,¬ gates with unbounded fan-in.
Does this class of circuits have capacity to capture complicated functions? The answer is no.

Theorem 2. n-bit parity needs exponential size in AC0 setting.

Similarly, we can define AC0(⊕) as AC0 circuits that are also equipped with unlimited fan-in ⊕
gates. Does adding n-bit parity as basis to above basis (AC0(⊕)), increase its capacity drastically?
The answer is also no.

Theorem 3. n-bit Majority needs exponential size in AC0(⊕)

Lemma 4. n-bit Majority has O(log n), poly(n) size formulas / circuits with basis {∧,∨,¬}

Proof. Let’s look at a much easier problem which helps in solving n-bit Majority.

Define Base2 : {0, 1}n → {0, 1}logn, where Base2(x) = # of 1’s present in x.

Majority(x) is computed in O(log n) time provided Base2(x) is computed in O(log n) time, as we
just need to compare result of Base2 with n

2 . This takes log n depth since we compare log n bits.
Hence, showing that Base2 has poly(n) size formula with depth O(log n) proves the lemma.

Let’s see if divide and conquer approach helps in calculating Base2.

3

Base2(x1, x2, x3 · · ·xn) = Base2(x1, x2, · · ·xn
2
) + Base2(xn

2
+1, xn

2
+2, · · ·xn)

We analyze the depth of this circuit as follows: it takes O(log n) depth to add two numbers with
log n bits since we sequentially add each corresponding bit to get carry and then proceed to next
bit.

Depth = O(log n) +O(log
n

2
) +O(log

n

4
) + · · ·+O(log

n

2i
)

= O(log n) +O(log n− 1) +O(log n− 2) + · · ·+O(1)

= O(log2 n)

We obtain a O(log2 n) circuit for Base2 but need a O(log n) circuit, since only at O(log n) depth
conversion between circuits and formulas occur within polynomial size increase.

However, though we can compute Base2 of first half and second half above in parallel, we are
constrained by the sequentiality of addition due to the carry bits. If we can somehow parallelize
the step of adding bits, we may obtain better depth than O(log2 n).

Iterated Addition

Let’s look at computing a general function which adds m numbers that are k bits each.

SUM :
(
{0, 1}k

)m 7→ {0, 1}k+dlogme s.t. SUM(y1, y2, · · · ym) =
m∑
i=1

yi where each yi ∈ {0, 1}k is an

integer of k bits, and the result of SUM is a base 2 representation of the integer sum.

Claim 5. SUM can be computed by a formula of O(logm) depth and poly size.

Proof. Let x, y, z ∈ {0, 1}k and xi is ith bit of x.

x + y + z =

(
k−1∑
i=0

2ixi

)
+

(
k−1∑
i=0

2iyi

)
+

(
k−1∑
i=0

2izi

)

=

k−1∑
i=0

2i(xi + yi + zi)

=

k−1∑
i=0

2i
(
Parity(xi, yi, zi) + 2 ·Majority(xi, yi, zi)

)
=

k−1∑
i=0

2i · Parity(xi, yi, zi) +
k−1∑
i=0

2i+1 · Parity(xi, yi, zi)

= p + c

4

where p and c are two numbers of size k + 1.

Parity and Majority of 3 bit inputs are constant depth circuits with depth 3. Therefore, by using
a constant depth we can convert m numbers of size k bits to 2

3m numbers of size k + 1 bits with
same sum. Hence, with depth O(logm), we get 2 numbers whose sum is the desired result and
each number is of size k + logm.

Now that we have two numbers, we use our addition circuit of depth k + logm (number of input
bits) to get the final sum. Recall that formula of size s can be converted to formula of size ≤ sk

and depth O(log s). Thus the final addition of two numbers is reduced to depth O(log(k + logm)).

∴ Total depth of formula for SUM would be O(logm) +O(log(k + logm)) ≈ O(logm).

Corollary 6. Base2 can be computed by a formula of O(log n) depth and poly size.

Proof. Observe that Base2 is a special case of SUM where m = n and k = 1. Hence, the depth of
the corresponding circuit is O(log n) +O(log(1 + log n)) ≈ O(log n).

Note: Corollary 6 proves the claim made in Lemma 4.

Corollary 7. MULT , or integer multiplication of two n-bit numbers, has a formula of depth
O(log n) and poly size.

4 CNF’s and DNF’s

Definition 8. A CNF is a formula of form C1 ∧ C2 ∧ · · · ∧ Cm where each Ci is a clause of the
form Xi1 ∨Xi2 ∨ · · · ∨Xij where each Xij is a literal of the form either a variable or negation of
the variable.

Example: CNF on variables x1, x2, x3, · · ·x6 would be

F = (x1 ∨ x2 ∨ x̄4) ∧ (x2 ∨ x̄4 ∨ x̄5 ∨ x6) ∧ (x̄2 ∨ x̄3) ∧ (x3 ∨ x̄4 ∨ x̄5)

where x̄i is negation of variable xi.

Fact 9. Every boolean function f : {0, 1}n 7→ {0, 1} has a CNF representation. Let y be an n bit
number where the function gives 0. Hence, f can be written as

f(x) =
∧

ys.tf(y)=0

[
Is(x 6= y)

]
=

∧
ys.tf(y)=0

n∨
i=1

[
Is(xi 6= yi)

]
Is(xi 6= yi) = xi if yi = 0

Is(xi 6= yi) = x̄i if yi = 1

5

where each condition Is(x 6= y) is an ∨ clause of n-bits as x is an n-bit number. It checks whether
any of the individual bits of x, y differ i.e. Is(xi 6= yi) where xi, yi are ith bits of x,y respectively.

The definition of DNF follows similarly.

Definition 10. A DNF is a formula of form C1 ∨ C2 ∨ · · · ∨ Cm where each Ci is a clause of the
form Xi1 ∧Xi2 ∧ · · · ∧Xij where each Xij is a literal of the form either a variable or negation of
the variable.

Example: DNF on variables x1, x2, x3, · · ·x6 would be

F = (x1 ∧ x2 ∧ x̄4) ∨ (x2 ∧ x̄4 ∧ x̄5 ∧ x6) ∨ (x̄2 ∧ x̄3) ∨ (x3 ∧ x̄4 ∧ x̄5)

where x̄i is negation of variable xi.

Fact 11. Every boolean function f : {0, 1}n 7→ {0, 1} has a DNF representation. Let y be an n bit
number where the function gives 1. Hence, f can be written as

f(x) =
∨

ys.tf(y)=1

[
Is(x = y)

]
=

∨
ys.tf(y)=1

n∧
i=1

[
Is(xi = yi)

]
Is(xi = yi) = x̄i if yi = 0

Is(xi = yi) = xi if yi = 1

where each condition Is(x = y) is an ∧ clause of n-bits as x is an n-bit number. It checks whether
all of the bits xi = yi where xi, yi are ith bits of x, y respectively.

Definition 12. A k-CNF is a CNF formula where the number of literals in each clause is at
most k.

Lemma 13. (Part of Cook-Levin Theorem) Any CNF can be written as a 3-CNF formula if extra
literals are allowed. Formally, for every f : {0, 1}n → {0, 1}, there exists g : {0, 1}n+m → {0, 1}
such that

• g has 3-CNF formula where every clause is of size 3.

• ∀x where f(x) = 1 ⇐⇒ ∃y s.t. g(x, y) = 1

Example: A CNF with 4 literals can be written as a 3-CNF.

(x1 ∨ x2 ∨ x3 ∨ x4) = (x1 ∨ x2 ∨ y1) ∧ (ȳ1 ∨ x3 ∨ x4)

However, if extra literals are not forbidden, we are led to the following question: can every boolean
function be written in 3-CNF form? The answer is no.

Lemma 14. No 4-CNF can be written as a 3-CNF formula.

6

Proof. An arbitrary 4-CNF formula consists of ∨ clauses of size 4. Suppose towards contradiction
that a single clause with 4 literals can be expressed as 3-CNF. Then

(x1 ∨ x2 ∨ x3 ∨ x4) =
∧
i

(yi,1 ∨ yi,2 ∨ yi,3)

where yi,j are literals using the variables x1, x2, x3. Let us consider an input where a clause consist-
ing of variables yi,1, yi,2, yi,3 are zero, and thus the value of the R.H.S. of equation is zero. However,
since value of only 3 literals are fixed, we can always choose the value of 4th literal such that the
L.H.S of equation evaluates to 1. Contradiction, so no boolean function in 4-CNF form can be
written as a 3-CNF formula.

On the contrary, let us formally define when a boolean function can be written as k-CNF.

Definition 15. For any boolean function f : {0, 1}n → {0, 1}, the 0-certificate complexity,
C0(f), is the smallest k where for every x ∈ {0, 1}n where f(x) = 0, there exists S ⊆ [n] such that

• |S| 6 k

• For every y ∈ {0, 1}n such that y|S = x|S, we have f(y) = 0

where x|S are bits of x at the indices selected by subset S (read as the restriction of x to S).

For x ∈ {0, 1}n, and S ⊆ [n]

x|S = (xi)i∈S ∈ {0, 1}|S|

The definition above states that for every possible n bit inputs, there always exists a subset of
input bit positions S such that restricting them, fixes the value of the function to be 0. Thus, S is
the certificate for which the function evaluates to zero. The minimum size of such a subset in bits
needed to fix / certify the value of the function is the certificate complexity. In this case, S fixes
the function to evaluate to 0, so we refer to it as the 0-certificate complexity.

Lemma 16. f can be written as a k-CNF iff C0(f) 6 k.

Proof. This proof trivially follows from the definition of 0-certificate complexity. By definition, for
every input x where a given boolean function evaluates to zero, there exists a subset S of bits from
these inputs, and when the bits in S are fixed appropriately, the function evaluates to zero. The
minimum number of bits needed to be fixed, which is exactly the 0-certificate complexity, k.

From Fact 9, every function can be written as CNF

f(x) =
∧

∀y s.t. f(y)=0,∃S s.t. |S|6k

[
Is(x|S 6= y|S)

]
as C0(f) 6 k, existence of such set S is guaranteed

=
∧

(∀y s.t. f(y)=0∃S s.t. |S|6k)

∨
j∈S

[
Is(xj 6= (y|S)j)

]
where each clause is of size k

Hence, f can be written as k-CNF.

7

Definition 17. For any boolean function f : {0, 1}n → {0, 1}, the 1-certificate complexity,
C1(f), is the smallest k where for every x ∈ {0, 1}n with f(x) = 1, there exists S ⊆ [n] such that

• |S| 6 k

• For every y ∈ {0, 1}n such that y|S = x|S, we have f(y) = 1

Lemma 18. f can be written as a k-DNF iff C1(f) 6 k.

Proof. Similar to the above proof.

Example:

f(x) = x1 ∧ x2 ∧ · · · ∧ xn

C0(f) = 1

C1(f) = n

Definition 19. Certificate complexity, C(f) = max(C0(f), C1(f)).

5 Decision Trees

Definition 20. Decision trees are a model of computation where each input bit is read, and the
decision to read next input bit is taken based on the inputs read so far. It models the execution of
a boolean function with output bit at the leaf.

Definition 21. Deterministic decision trees choose the next input bit to read deterministically
based on current input bit read. Similarly, randomized decision trees choose the next input bit
to read based on the outcome of a random event alongside with the current input bit read.

Definition 22. The depth of the decision tree is the length of the longest path from root to leaf in
the tree.

Definition 23. The deterministic decision tree depth of a boolean function f is the smallest
depth of all possible decision trees for f and is denoted by DT(f) (the ‘D’ stands for deterministic).

Lemma 24. If a boolean function f has a decision tree of depth 6 d, then C(f) 6 d.

Examples:

• DT (n bit AND) = n, ∵ C1(n bit AND) = n

• DT (n bit XOR) = n, ∵ C1(n bit XOR) = n and C0(n bit XOR) = n

• DT (n bit Maj) > n/2 + 1, ∵ C1(n bit Maj) = C0(n bit Maj) = n/2 + 1

We see DT (n bit Maj) = n, since for any corresponding decision tree, we can always design an
adversary input where 0, 1 are alternatively varied. The resulting output is only decided by last
input bit before the leaves. So, the depth should be n.

Fact 25. If f depends on n variables, then DT (f) ≥ log n.

8

