
Lecture 5: k-wise Independent Hashing and Applications
Topics in Complexity Theory and Pseudorandomness (Spring 2013)

Rutgers University
Swastik Kopparty

Scribes: Yun Kuen Cheung, Aleksandar Nikolov

1 Overview

In this lecture, we will introduce k-wise independence and k-wise independent hashing. We will dis-
cuss some of their applications, including derandomizing approximation algorithms for MAX-CUT
and MAX-E3-SAT, data structures for the set membership problem, and constructing polynomial
size AC0 circuits for threshold functions with a polylogarithmic threshold.

2 k-wise Independence

Definition 1. Let X1, X2, · · · , Xn be a collection of random variables, with respective ranges
A1, A2, · · · , An. Assume |Aj | is finite for all 1 ≤ j ≤ n. The random variables are independent if
for any ai ∈ Ai,

Pr [(X1 = a1) ∧ (X2 = a2) ∧ · · · ∧ (Xn = an)] =
n∏
j=1

Pr [Xj = aj] .

For k ≥ 2, the random variables are k-wise independent if for any 1 ≤ i1 < i2 < · · · < ik ≤ n and
any ai1 ∈ Ai1, ai2 ∈ Ai2, . . ., aik ∈ Aik ,

Pr [Xi1 = ai1 ∧Xi2 = ai2 ∧ · · · ∧Xik = aik] =
k∏
j=1

Pr
[
Xij = aij

]
.

2-wise independence is also called pairwise independence.

If the random variables X1, X2, · · · , Xn are independent, they are k-wise independent for any k.
However, the converse is not true as shown by the following example. Also, if k1 > k2, k1-wise
independence implies k2-wise independence.

Example 2. Let X1, X2 be uniform independent random variables taking values in {0, 1}. Let
X3 = X1 ⊕X2. It is easy to check that {X1, X2, X3} is pairwise independent, but not independent.

3 Applications to Derandomization

We will discuss two classical examples of randomized algorithms, each using Ω(n) independent
random bits. However, the analysis of these randomized algorithms only requires the weaker k-wise

1

independence for constant k. As we will see in Section 4, k lg n independent random bits suffice
to generate n k-wise independent random bits. The logarithmic improvement in the number of
independent random bits needed allows us to convert the randomized algorithms into polynomial
time deterministic algorithms.

Example 3. In the MAX-CUT problem we are given G = (V,E) as input, and our objective is
to find a partition of V = V0 ∪ V1 such that the size of E(V0, V1) = {e = {u, v} ∈ E | (u ∈ V0, v ∈
V1) ∨ (u ∈ V1, v ∈ V0)} is maximized. MAX-CUT is known to be NP-hard. There is a simple
randomized approximation algorithm: for each v ∈ V , put it in V0 and V1 randomly, independently
and uniformly. Then

E [|E(V0, V1)|] =
∑

e={u,v}∈E

(Pr [(u ∈ V0) ∧ (v ∈ V1)] + Pr [(u ∈ V1) ∧ (v ∈ V0)])

=
∑

e={u,v}∈E

1

2
=

1

2
|E| ≥ 1

2
max
V0,V1

|E(V0, V1)|.

Hence, this randomized algorithm achieves a 1
2 -approximation in expectation. In the above calcula-

tion, we don’t really need each v ∈ V to be put into V0 and V1 independently, we only need pairwise
independence. It is known that lg n bits suffice to generating n pairwise independent random bits
(see Example 5). By exhausting all 2lgn = n possibilities of the pairwise independent random bits,
and choosing the one which gives the largest |E(V0, V1)|, we have a deterministic 1

2 -approximation
to MAX-CUT.

Remark. There is another deterministic greedy algorithm that achieves 1
2 -approximation.

Remark. The best known approximation ratio is 0.878, achieved by Goemans and Williamson
using semi-definite programming and randomized rounding. Their algorithm was derandomized by
Mahajan and Ramesh.

Example 4. A clause is a disjunction of boolean literals, e.g. x1 ∨ x4 ∨ x6. Given m clauses, each
clause having three distinct variables, MAX-E3-SAT is the problem to find an assignment to the
variables such that the number of clauses satisfied is maximized. MAX-E3-SAT is known to be
NP-hard. There is a simple randomized algorithm: for each variable, set it to TRUE or FALSE
randomly, independently and uniformly. Then

E [number of clauses satisfied] =
∑
c

Pr [clause c is satisfied]

=
∑
c

7

8
=

7

8
m ≥ 7

8
max
x

(number of clauses satisfied by assignment x).

Hence the randomized algorithm achieves a 7
8 -approximation in expectation. Here we only need

3-wise independence. It is known that 2 lg n bits suffice to generating n 3-wise independent ran-
dom bits. By exhausting all 22 lgn = n2 possibilities of the 3-wise independent random bits, and
choosing the one which gives the maximum number of satisfied clauses, we have a deterministic
7
8 -approximation to MAX-E3-SAT.

2

4 Generating k-wise Independent Random Variables

In this section we will give three examples of generating k-wise independent random variables with
simple families of hash functions.

Example 5. Let x1, x2, · · · , xt be uniformly random bits. For each non-empty subset S of [t],
define xS = ⊕i∈Sxi. We claim that the collection of random bits {xS} are pairwise independent:
given distinct S1, S2, WLOG we may assume S1 6⊂ S2, i.e. T := S1 \ S2 is not empty; then it is
easy to see that

Pr [xS1 = a ∧ xS2 = b] = Pr [xS2 = b ∧ xT = a⊕ xS1∩S2] = Pr [xS2 = b]× Pr [xT = a⊕ xS1∩S2]

= (1/2)2

= Pr [xS1 = a]× Pr [xS2 = b] .

In this example, we need t uniform random bits to generate 2t − 1 pairwise independent random
bits.

Example 6. Let F = Fn be a finite field of n elements. Pick c, d ∈ F uniformly at random. Define
Xα = c ·α+ d, for all α ∈ F. Note that Xα is uniformly distributed in F. We claim that for α 6= β,
Xα and Xβ are pairwise independent:

Pr [Xα = a ∧Xβ = b] = Prc,d [c · α+ d = a ∧ c · β + d = b] = Pr

[
c =

a− b
α− β

∧ d =
aβ − bα
α− β

]
= (1/|F|)2

= Pr [Xα = a]× Pr [Xβ = b] .

In this example, we need 2 log |F| uniform random bits for picking c, d to generate |F| pairwise
independent random variables, each with range in F.

Example 7. This is a generalization of Example 6 to generate k-wise random variables for ar-
bitrary k. Let F = Fn be a finite field of n elements. Pick c0, c1, · · · , ck−1 ∈ F uniformly at
random. Define Xα =

∑k−1
i=0 ciα

i, for all α ∈ F. Note that Xα is uniformly distributed in F. Given
a1, a2, · · · , ak ∈ F and distinct α1, α2, · · · , αk, by Lagrange interpolation we know that there exists
unique c0, c1, · · · , ck−1 ∈ F such that Xα1 = a1, Xα2 = a2, · · · , Xαk = ak. Hence

Pr [Xα1 = a1 ∧Xα2 = a2 ∧ · · · ∧Xαk = ak] = (1/|F|)k =

k∏
i=1

Pr [Xαi = ai] .

In this example, we need k log |F| uniform random bits for picking c0, c1, · · · , ck−1 to generate |F|
k-wise independent random variables, each with range in F.

Remark. It is not difficult to see that if |F| = 2j and 0 ≤ i ≤ j, Examples 6 and 7 allow us
to use kj uniform random bits to generate 2j uniformly random elements of [2i] which are k-wise
independent.

5 Set Membership Problem

In this section we introduce the bit probe and cell probe models for static data structures and
discuss applications of k-wise independence to constructing efficient data structures.

3

5.1 Static Data Structures

The set membership problem is defined as follows. Let [m] be the universe, and let the input be
S ⊂ [m] with |S| = n. Based on S, one writes data structure f(S) to memory. Based only on f(S),
a query algorithm must be able to answer, for all i ∈ [m], “Is i ∈ S?” using few probes to memory.

There are two models of probing:

1. Bit Probe Model (BPM): the space complexity is measured in the number of bits of f(S) and
the query complexity is measured in the number of bits accessed (probed);

2. Cell Probe Model (CPM): the data structure f(S) is written in blocks, or cells, where each
cell consists of w bits; we usually assume w = Ω(logm); the space complexity is measured
in the number of cells of f(S) and the query complexity is measured in the number of cells
accessed (probed).

Remark. Since we are not bounding the complexity of computing f(S), randomization does not
help for computing the data structure: any randomized f is dominated by an f ′ that fixes the
random bits to the optimal choice. However, we will see later that randomized query algorithms
can have lower complexity than deterministic ones.

Assume m = n1+Ω(1). The smallest space complexity possible is log
(
m
n

)
∼ Ω(n logm) bits, or Ω(n)

cells, as a data structure (together with a query algorithm) can be used to reconstruct S, and,
therefore, must distinguish between all size n subsets of [m].

A simple solution in the CPM with optimal space complexity is to write all elements of S to memory
in sorted order. Then the query algorithm can answer a query for i by doing binary search on the
data structure. The query complexity is O(log n) cell probes (similar complexity is achieved in the
dynamic setting by a binary search tree). The next subsection describes a data structure which
works for the static case, in which the smallest memory possible is achieved and takes only O(1)
probes in CPM.

5.2 Set Membership in Linear Space and O(1) Cell Probes

We will present a data structure due to Fredman, Komlos, and Szemeredi that supports set mem-
bership queries with constant query complexity and linear space in CPM. The data structure makes
crucial use of 2-wise independent distributions. The complexity of the data structure is optimal
up to constants: as we argued, any data structure which answers all membership queries correctly
needs to store Ω(n) cells (in the regime m = n1+Ω(1)) and clearly needs to probe at least a single
cell per query.

A natural strategy to solve the set membership problem is hashing: map the input to a set of l
cells using a one to one function. More precisely, we hope to find a family of functions H = {h :
[m] → [l]}, where l is as small as possible and for any S ⊆ [m] there exists an h ∈ H such that
the restriction h|S : S → [l] of h to S is one to one. Given such a family we can construct a
data structure as follows: we write S ∩ h−1(1) in the first cell, S ∩ h−1(2) in the second, etc., and,
S ∩h−1(l) in the l-th cell; we also write down an identifier of the function h which was used. Given
a query element i, the query algorithm reads the identifier of h and probes the j-th cell for j = h(i).
If that cell stores i, then i is in S, otherwise it is not. Obviously, if H is the set of all functions

4

from m to n, then H satisfies the desired property: for any S there is an h ∈ H which is one to one
on S. However, such an H is too big: it has size mn, so we need Ω(n) cells to identify a function
h ∈ H and the query algorithm needs to probe Ω(n) cells to identify which h was used. So it is
also important to find a family H of polynomial size.

If we allow l to be n2, then 2-wise independence provides a family with the above properties. Let
us first define what we mean by a pairwise independent hash family.

Definition 8. A pairwise-independent hash family is a set of functions H = {h : [m] → [l]} such
that for all a, b ∈ [m] and all c, d ∈ [l] we have Prh[h(a) = c∧h(b) = d] = 1/l2, where the probability
is taken over choosing a uniformly random h ∈ H.

Pairwise independent hashing is simply a different viewpoint on 2-wise independent distributions.
When h is chosen at random from H, h(1), . . . , h(m) are m 2-wise independent random variables
taking values in [l]. Similarly, any m 2-wise independent random variables x1, . . . , xm taking values
in [l] give a pairwise independent hash family: we can associate a hash function h to every choice
of random bits and set h(a) = xa for all a ∈ [m]. Recalling our construction of 2-wise independent
distributions, we can construct a pairwise-independent hash family as H = {ax + b : a, b ∈ F} for
a field F of size l. Such a family H has size l2.

A simple scheme. Let us analyze the data structure we described above when H is a pairwise
independent family. First, we prove that a pairwise-independent H has a one to one function for
every S.

Lemma 9. Let H = {h : [m] → [l]} be a pairwise independent hash family and let l ≥ n2. Then
for any S ⊆ [m] of size |S| = n, there exists an h ∈ H such that the restriction h|S is a one to one
function from S to [l].

Proof. We will use the probabilistic method. Let us choose h uniformly at random from H. For
a, b ∈ S, let Xa,b be the indicator random variable that takes value 1 if and only if h(a) = h(b).
I.e. Xa,b is 1 if and only if h makes a and b collide. We can write the expected number of collisions
as

E

[∑
a<b

Xa,b

]
=
∑
a<b

E[Xa,b] =
n(n− 1)

2l
.

Above we used the fact that, by the pairwise independence of H,

Pr[Xa,b = 1] =
∑
c∈[l]

Pr[h(a) = h(b) = c] =
1

l
.

Since l ≥ n2, the expected number of collisions is less than 1/2, and therefore there exists an h∗ ∈ H
that causes less than 1/2 collisions of elements of S. But the number of collisions is an integer,
therefore h∗|S is one to one.

Lemma 9 gives us a data structure with O(n2) cells and O(1) query time: as discussed above, given
S, we find an h such that h|S is one to one, and we write down h−1(1) ∩ S, . . . , h−1(l) ∩ S as well
as an identifier of h, for example a and b if we use H = {ax + b}. Then a query algorithm reads
the identifier of h and, given a query i, reads h−1(j) ∩ S where h(i) = j. The algorithms answers
“yes” if and only if the result is i. Since the identifier of h can be written in constant number of
cells, and h is one to one, evaluating a query takes constant time.

5

The real scheme. We are now ready to present the full scheme of Fredman, Komlos, and
Szemeredi. The disadvantage of the simple scheme above is that it uses suboptimal space: a
quadratic number of cells, when only a linear number is necessary. As a first step, let us see how
many collisions we have when we hash into a set of linear size.

Lemma 10. Let H = {h : [m] → [l]} be a pairwise independent hash family and let l ≥ n. Then
for any S ⊆ [m] of size |S| = n, there exists an h ∈ H which causes less than n/2 elements of S to
collide.

The proof of Lemma 10 is identical to the proof of Lemma 9. For input S, let us pick an h that
satisfies the conclusion of Lemma 10, i.e causes less than n/2 collisions of elements of S. Then in
the data structure we write:

• for each j ∈ [l]:

– the size of the inverse nj = |h−1(j) ∩ S|;
– a pointer to an instance of the simple scheme with input h−1(j) ∩ S ;

• an identifier of h.

On query i, the query algorithm reads h and reads the cells corresponding to j = h(i); then it
accesses the corresponding instance of the simple scheme and answers the query. Since the simple
scheme supports answering queries with a constant number of probes, and the overhead to access
the right instance of the simple scheme requires a constant number of probes, the query complexity
is O(1) probes. However, we need to analyze the space complexity of the data structure. Notice
that the total number of cells used is up to a constant factor equal to n + n2

1 + . . . + n2
n. The

following lemma then completes the analysis.

Lemma 11. Let h : S → [l] be such that there are at most n/2 collisions of elements of S. Then
we have

l∑
j=1

n2
j ≤ 2n

Proof. The number of elements a, b that collide at j, i.e. |{(a, b) : a 6= b∧h(a) = h(b) = j}|, is
(nj

2

)
.

Since the total number of collisions is assumed to be at most n/2, we have

n

2
≥

n∑
j=1

(
nj
2

)
=

n∑
j=1

n2
j

2
− nj

2
=

1

2

l∑
j=1

n2
j −

n

2
.

The lemma follows after rearranging the terms.

Putting everything together, we get the following theorem.

Theorem 12. There exists a data structure for the set membership problem in the cell probe model
that uses O(n) cells of space and answers each membership query using O(1) cell probes.

6

6 Hashing and Computing Threshold Functions in AC0

Threshold functions are a family of boolean function {ft : {0, 1}n → {0, 1} : 0 ≤ t ≤ n+ 1}, where
ft(x) = 1 if and only the hamming weight of x satisfies wt(x) ≥ t. The threshold functions include
the MAJORITY function (t = n/2), the n-wise AND (t = n) and the n-wise OR (t = 1), the
constant 0 (t = n+ 1) and the constant 1 (t = 0).

Let us denote by s(n, d) the size of the smallest depth d AC0 circuit computing MAJORITY. Recall
the following bounds on s(n, d):

• s(n, d) has to be at least 2Ω(n1/d−ε);

• s(n, d) is at most 2n
O(1/d)

.

Similarly, let us denote by st(n, d) the size of the smallest depth d AC0 circuit computing ft. We
have the following bounds:

• for any t, st(n, d) = 2n
O(1/d)

by computing MAJORITY(x1n−t+10t);

• s1(n, 1) = sn(n, 1) = 1;

• for t ≥ 2, st(n, 2) = O(nt) by taking an OR of all
(
n
t

)
t-wise ANDs of all sets of t bits.

Using pairwise independent hashing we can improve the above bound when t is polylogarithmic in
n. We have the following theorem, due to Ragde and Wigderson.

Theorem 13. Let st(n, d) denote, as above, the size of the smallest depth d AC0 circuit computing
ft. Then, for all k ≥ 1 and t = O(logk n), st(n,Θ(k)) = poly(n), where the degree of the polynomial
is independent of k.

Proof. Our strategy will be to use pairwise independent hashing to reduce the problem to a problem
instance whose size depends only on t. Specifically, we will construct an AC0 circuit C1 : {0, 1}n →
{0, 1}t2+1, where we think of the output of the circuit as a pair (y, b) = C1(x). The essential
property of C1 is as follows:

C1(x) = (y, b)⇒

{
wt(y) = wt(x) b = 0

wt(x) > t b = 1
(1)

In other words, C1 is either able to “decide” that ft(x) = 1 or, in case of a failure, it reduces the
problem to an instance of size t2. To finish the construction of the circuit we need another depth d
AC0 circuit C2 : {0, 1}t2 → {0, 1} which computes C2(y) = ft(y). As we discussed, we can bound

the size of C2 by 2t
O(1/d)

. The final circuit C computes 1[b = 1] ∨ (1[C1(x) = (y, 0)] ∧ C2(y)). Let
d1, d2 = d be respectively the depths of C1 and C2, and s1, s2 – their sizes. Then the depth of C
is d1 + d2 + O(1), and the size of C is s1 + s2 + O(1) = s1 + 2t

O(1/d)
. We will choose d = Ω(k) so

that s2 = poly(n). It remains to construct C1 of polynomial size and constant depth.

To construct C1 we will use pairwise independent hashing. Let H = {h : [n]→ [t2]} be a pairwise
independent hash family. By Lemma 9, for any S ⊆ [n] of size at most t, there exists an h ∈ H

7

such that h|S is one to one. We can take S = {i : xi = 1} and set b to be the indicator whether
there exists an h which is one to one when restricted to S, and if such h exists also set yj = xl if
h−1(j) ∩ S = {l} or 0 otherwise. Then C1 would satisfy (1); however, we need to verify that this
computation can be done with a constant depth AC0 circuit.

To this end, define

∀h ∈ H : βh = ¬

 ∨
i,j:h(i)=h(j)

xi ∧ xj

 .

Intuitively, βh indicates whether h is “good”, i.e. whether it is one to one when restricted to the
indexes of the 1 bits in the input. Let us also define some canonical total ordering ≺ on H; the
following functions will indicate whether h is the first “good” h in H:

γh = βh ∧

(∧
h′≺h
¬βh′

)
.

We are now ready to define b and y. First, b indicates whether all h are “bad”, which, by Lemma 9
can only happen if wt(x) > t.

b =
∧
h

¬βh

Finally, the bits yj for j ∈ [t2] are defined with respect to the first “good” h.

yj =
∨
h

γh ∧
 ∨
i:h(i)=j

xi

Each of γh, βh, and, therefore, b and y, can be computed in constant depth. Also, computing each βh
requires O(n2) gates, each γh an additional O(1) gates, b also an additional O(1) gates, and, finally,
each yj – additional O(|H|) gates. The total size of C1 is then O(|H|(n2 + t2)) = O(t4n2 + t6).

Ragde and Wigderson also showed a construction with o(n) gates.

7 Set Membership with 1 Bit Probe

We now turn our attention to the bit probe model. In this model, the data structure of Fredman,
Komlos, and Szemeredi translates to space complexity of O(n logm) bits and query complexity
of O(logm) bit probes. While the space complexity is optimal, we can no longer claim that the
query complexity is optimal: our previous argument only implies that at least a single bit probe
is necessary. In this section we explore whether a single bit probe is also sufficient while keeping
the space complexity low. A deterministic single bit probe query algorithm is forced to probe a
different bit for every query i ∈ [m], and, therefore, the space complexity must be at least m bits.
However, remarkably, we can still keep the space complexity low if we allow the query algorithm
to be randomized.

In order to benefit from randomization, we are going to have to allow the query algorithm to make
a mistake with some probability. We have two kinds of guarantees on such algorithms:

8

• One-sided error : a query algorithm for set membership with one-sided error ε answers “yes”
on query i if i ∈ S and answers “no” with probability greater than 1− ε if i 6∈ S;

• Two-sided error : a query algorithm for set membership with two-sided error ε gives the
correct answer with probability greater than 1− ε.

Notice that with both notions of error, the space lower bound of log
(
m
n

)
holds as long as ε < 1 in

the one-sided regime and ε < 1/2 in the two-sided regime. This is because even a randomized query
algorithm can still be used to recover exactly the input S, e.g. by enumerating over all possible
random choices.

The beautiful data structures of Buhrman, Miltersen, Radhakrishnan and Venkatesh give nearly
optimal space and bit probes in these settings. There exists a set membership data structure
with space complexity O(n

2

ε2
logm) bits and a single bit probe randomized one-sided error ε query

algorithm. If we allow two-sided error ε, the space complexity can be brought down to O(n
ε2

logm).
Both results are optimal up to constant factors in the space complexity.

Theorem 14. There exists a data structure of size O(n
2

ε2
logm) and a randomized query algorithm

that makes a single bit probe and has one-sided error ε.

Proof. It is helpful to think of one-bit probe query algorithms in terms of a bipartite graph G ⊆
[m] × [l]. For v ∈ [m], let Γ(v) be the neighborhood of v, and for S ⊆ [m], let Γ(S) be the
neighborhood of S. Given input S, the data structure is the indicator vector of Γ(S). Given a
query v ∈ [m], the query algorithm probes a uniform random neighbor u of v and answers “yes” if
u ∈ Γ(S). The space complexity of the data structure is l bits; the query algorithm has one-sided
error ε if the following condition holds:

∀S ⊆ [m](|S| = n), ∀v 6∈ S : |Γ(v) ∩ Γ(S)| ≤ εΓ(v). (2)

We will choose G to be a-regular on the left and will require that

∀v 6= w : |Γ(v) ∩ Γ(w)| ≤ b.

By an application of the probabilistic method, for every m, a and b, there exists such a G with
l = O((a2/b)m1/b). If we set b = logm and a = n logm

ε , then we have l = O(n
2

ε2
logm). For any v,

|Γ(v) = a|, and, by the union bound,

|Γ(v) ∩ Γ(S)| ≤
∑
w∈S
|Γ(v) ∩ Γ(w)| ≤ nb.

Since we chose a and b so that nb ≤ εa, we conclude that (2) holds.

9

