Homework 1

Rutgers University
Swastik Kopparty
Last modified: Saturday $21^{\text {st }}$ September, 2019

1. Let p, q be primes $\equiv 1 \bmod 4$.
(a) Let W be the set of roots of $X^{p}-1$ in some finite extension \mathbb{F}_{Q} of \mathbb{F}_{q}. Show that there is an element $\omega \in W$ such that $W=\left\{1, \omega, \omega^{2}, \ldots, \omega^{p-1}\right\}$. Such an ω is called a primitive p th root of unity.
(b) What is the degree of ω over \mathbb{F}_{q} ? (i.e. What is the degree of the minimal polynomial of ω over \mathbb{F}_{q}).
(c) Show that:

$$
\sum_{0 \leq x<p} \omega^{x}=0
$$

(d) Define

$$
S=\sum_{0 \leq x<p} \omega^{x^{2}}
$$

Show that $S^{2}=p$.
(e) Show that $S \in \mathbb{F}_{q}$ iff q is a quadratic residue $\bmod p$.
(f) Conclude that p is a quadratic residue $\bmod q$ if and only if q is a quadratic residue $\bmod p$. Note where the $1 \bmod 4$ condition got used.
2. Let $\beta_{1}, \ldots, \beta_{n}$ be a basis for $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q}. Having chosen a basis, this gives a $\mathbb{F}_{q^{-}}$-vector space isomorphism $\varphi: \mathbb{F}_{q^{n}} \rightarrow \mathbb{F}_{q}^{n}:$ for $\alpha \in \mathbb{F}_{q^{n}}$, if $\alpha=\sum c_{i} \beta_{i}$, we define:

$$
\varphi(\alpha)=\left(c_{1}, \ldots, c_{n}\right)
$$

(a) Show that φ is an \mathbb{F}_{q}-linear map.
(b) For an element $\alpha \in \mathbb{F}_{q^{n}}$, consider the linear map $M_{\alpha}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n}$ defined by:

$$
M_{\alpha}(x)=\varphi\left(\alpha \cdot \varphi^{-1}(x)\right)
$$

(where • represents multiplication in $\mathbb{F}_{q^{n}}$). We also denote by M_{α} the corresponding $n \times n$ matrix. In words: if you represent elements of $\mathbb{F}_{q^{n}}$ by vectors in \mathbb{F}_{q}^{n}, then M_{α} is the matrix you multiply with when you want to multiply by $\alpha \in \mathbb{F}_{q^{n}}$.
(c) Write some equations between the entries of M_{α} and the basis b_{1}, \ldots, b_{n}.
(d) Show that for $a, b \in \mathbb{F}_{q}, \alpha, \beta \in \mathbb{F}_{q^{n}}$,

$$
a M_{\alpha}+b M_{\beta}=M_{a \alpha+b \beta}
$$

(e) Everything we did above depended on the choice of b_{1}, \ldots, b_{n}. Suppose we choose a different basis $b_{1}^{\prime}, \ldots, b_{n}^{\prime}$, and get matrices M_{α}^{\prime} for each $\alpha \in \mathbb{F}_{q^{n}}$.
Show that there is an invertible matrix U such that for all $\alpha \in \mathbb{F}_{q^{n}}$,

$$
M_{\alpha}^{\prime}=U M_{\alpha} U^{-1}
$$

(Recall that two matrices A, B are called similar if $A=U B U^{-1}$ for some invertible matrix U, and that similarity preserves the characteristic polynomial.)
(f) Thus conclude that $\operatorname{Tr}\left(M_{\alpha}^{\prime}\right)=\operatorname{Tr}\left(M_{\alpha}\right), \operatorname{det}\left(M_{\alpha}^{\prime}\right)=\operatorname{det}\left(M_{\alpha}\right)$, and the eigenvalues of M_{α}^{\prime} and M_{α} are the same.
3. Pick a basis b_{1}, \ldots, b_{n} for $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q}.
(a) Let $\alpha \in \mathbb{F}_{q^{n}}$. Let M_{α} be the $n \times n \mathbb{F}_{q}$-matrix which represents multiplication by α (as in the previous problem). What are the eigenvalues of M_{α} ? What is the trace of M_{α} ? What is the determinant of M_{α} ?
Hints are footnotes ${ }^{1}{ }^{2}$.
(b) Let F be the $n \times n \mathbb{F}_{q}$-matrix that represents the map: $\alpha \mapsto \alpha^{q}$. What are the eigenvalues of F ? What is the trace of F ? What is the determinant of F ?
(c) Let $f(n, k)$ be the largest possible dimension of a linear space V of $n \times n \mathbb{F}_{q}$-matrices such that every nonzero $M \in V$ has rank $\geq n-k+1$. Show that $f(n, k)=n k$.
The problem of finding $f(n, k)$ over \mathbb{R} is significantly more difficult. (For $k=1$, look up RadonHurwitz numbers.)
(d) Show that there exists an $n \times n \mathbb{F}_{q}$-matrix A and a point $x \in \mathbb{F}_{q}^{n}$, such that

$$
\left\{A^{k} \cdot x \mid k \geq 0, k \in \mathbb{Z}\right\}=\mathbb{F}_{q}^{n} \backslash\{0\}
$$

Not for credit: Can you find a real orthogonal matrix A and a point x on the unit sphere of \mathbb{R}^{n}, such that $\left\{A^{k} x \mid k \geq 0, k \in \mathbb{Z}\right\}$ is dense in the unit sphere?
4. Let $\alpha, \beta \in \mathbb{F}_{q}$. Show that the polynomial $P(X)=X^{q}-\alpha X-\beta$ is irreducible if and only if $\beta \neq 0$, $\alpha=1$ and q is prime.
In the cases where $P(X)$ is reducible, find the degrees of all its irreducible factors.

[^0]
[^0]: ${ }^{1}$ Hint for one approach: you can choose any basis you like; by the previous problem, the answer does not depend on the choice of basis. Choose a convenient basis that depends on α. It may help to initially assume that α has degree n over \mathbb{F}_{q}.
 ${ }^{2}$ Hint for another approach: The eigenvalues of M are those $\lambda \in \overline{\mathbb{F}_{q}}$ for which there exists x with $M x=\lambda x$. Use the relationship between the entries of M_{α} and the basis b_{1}, \ldots, b_{n}.

