Homework 1

Topics in Finite Fields (Fall 2019) **Rutgers University** Swastik Kopparty Last modified: Saturday 21st September, 2019

- 1. Let p, q be primes $\equiv 1 \mod 4$.
 - (a) Let W be the set of roots of $X^p 1$ in some finite extension \mathbb{F}_Q of \mathbb{F}_q . Show that there is an element $\omega \in W$ such that $W = \{1, \omega, \omega^2, \dots, \omega^{p-1}\}$. Such an ω is called a primitive *p*th root of unity
 - (b) What is the degree of ω over \mathbb{F}_q ? (i.e. What is the degree of the minimal polynomial of ω over \mathbb{F}_q).
 - (c) Show that:

$$\sum_{0 \le x < p} \omega^x = 0.$$

(d) Define

$$S = \sum_{0 \le x < p} \omega^{x^2}$$

Show that $S^2 = p$.

- (e) Show that $S \in \mathbb{F}_q$ iff q is a quadratic residue mod p.
- (f) Conclude that p is a quadratic residue mod q if and only if q is a quadratic residue mod p. Note where the 1 mod 4 condition got used.
- 2. Let β_1, \ldots, β_n be a basis for \mathbb{F}_{q^n} over \mathbb{F}_q . Having chosen a basis, this gives a \mathbb{F}_q -vector space isomorphism $\varphi : \mathbb{F}_{q^n} \to \mathbb{F}_q^n$: for $\alpha \in \mathbb{F}_{q^n}$, if $\alpha = \sum c_i \beta_i$, we define:

$$\varphi(\alpha) = (c_1, \ldots, c_n).$$

- (a) Show that φ is an \mathbb{F}_q -linear map.
- (b) For an element $\alpha \in \mathbb{F}_{q^n}$, consider the linear map $M_\alpha : \mathbb{F}_q^n \to \mathbb{F}_q^n$ defined by:

$$M_{\alpha}(x) = \varphi(\alpha \cdot \varphi^{-1}(x)),$$

(where \cdot represents multiplication in \mathbb{F}_{q^n}). We also denote by M_{α} the corresponding $n \times n$ matrix. In words: if you represent elements of \mathbb{F}_{q^n} by vectors in \mathbb{F}_q^n , then M_{α} is the matrix you multiply with when you want to multiply by $\alpha \in \mathbb{F}_{q^n}$.

- (c) Write some equations between the entries of M_{α} and the basis b_1, \ldots, b_n .
- (d) Show that for $a, b \in \mathbb{F}_q$, $\alpha, \beta \in \mathbb{F}_{q^n}$,

$$aM_{\alpha} + bM_{\beta} = M_{a\alpha+b\beta}.$$

(e) Everything we did above depended on the choice of b_1, \ldots, b_n . Suppose we choose a different basis b'_1, \ldots, b'_n , and get matrices M'_{α} for each $\alpha \in \mathbb{F}_{q^n}$. Show that there is an invertible matrix U such that for all $\alpha \in \mathbb{F}_{q^n}$,

now that there is an invertible matrix
$$U$$
 such that for all $\alpha \in \mathbb{F}_{q^n}$

$$M'_{\alpha} = U M_{\alpha} U^{-1}$$

(Recall that two matrices A, B are called similar if $A = UBU^{-1}$ for some invertible matrix U, and that similarity preserves the characteristic polynomial.)

- (f) Thus conclude that $\operatorname{Tr}(M'_{\alpha}) = \operatorname{Tr}(M_{\alpha})$, $\det(M'_{\alpha}) = \det(M_{\alpha})$, and the eigenvalues of M'_{α} and M_{α} are the same.
- 3. Pick a basis b_1, \ldots, b_n for \mathbb{F}_{q^n} over \mathbb{F}_q .
 - (a) Let α ∈ F_{qⁿ}. Let M_α be the n × n F_q-matrix which represents multiplication by α (as in the previous problem). What are the eigenvalues of M_α? What is the trace of M_α? What is the determinant of M_α? Hints are footnotes^{1 2}.
 - (b) Let F be the $n \times n \mathbb{F}_q$ -matrix that represents the map: $\alpha \mapsto \alpha^q$. What are the eigenvalues of F? What is the trace of F? What is the determinant of F?
 - (c) Let f(n,k) be the largest possible dimension of a linear space V of $n \times n \mathbb{F}_q$ -matrices such that every nonzero $M \in V$ has rank $\geq n - k + 1$. Show that f(n,k) = nk. The problem of finding f(n,k) over \mathbb{R} is significantly more difficult. (For k = 1, look up Radon-Hurwitz numbers.)
 - (d) Show that there exists an $n \times n \mathbb{F}_q$ -matrix A and a point $x \in \mathbb{F}_q^n$, such that

$$\{A^k \cdot x \mid k \ge 0, k \in \mathbb{Z}\} = \mathbb{F}_a^n \setminus \{0\}.$$

Not for credit: Can you find a real orthogonal matrix A and a point x on the unit sphere of \mathbb{R}^n , such that $\{A^k x \mid k \ge 0, k \in \mathbb{Z}\}$ is dense in the unit sphere?

4. Let $\alpha, \beta \in \mathbb{F}_q$. Show that the polynomial $P(X) = X^q - \alpha X - \beta$ is irreducible if and only if $\beta \neq 0$, $\alpha = 1$ and q is prime.

In the cases where P(X) is reducible, find the degrees of all its irreducible factors.

¹Hint for one approach: you can choose any basis you like; by the previous problem, the answer does not depend on the choice of basis. Choose a convenient basis that depends on α . It may help to initially assume that α has degree n over \mathbb{F}_q .

²Hint for another approach: The eigenvalues of M are those $\lambda \in \overline{\mathbb{F}_q}$ for which there exists x with $Mx = \lambda x$. Use the relationship between the entries of M_{α} and the basis b_1, \ldots, b_n .