Combinatorics I (Fall 2017) Rutgers University Swastik Kopparty

Due Date: December 12, 2017.

- 1. Let S be a set of $\omega(q)$ lines in the projective plane over \mathbb{F}_q . We want to show that the union of all lines in S has size $(1 o(1)) \cdot q^2$.
 - (a) Using inclusion-exclusion (more precisely, the Bonferroni inequality), show that that the union of all lines in S has size $\geq \frac{q^2}{2}$.
 - (b) Let A denote the incidence matrix of the projective plane over \mathbb{F}_q (i.e. the 0/1 matrix with rows indexed by points and columns indexed by lines, and a 1 in entry (p, ℓ) denotes that line ℓ passes through point p). Compute $A^T A$.
 - (c) Let 1_S be the indicator vector of S. Compute the norms $||A1_S||_1$ and $||A1_S||_2$, and use this to show that the union of all lines in S has size $(1 o(1)) \cdot q^2$.
- 2. Let Σ be a finite set of cardinality q. Formulate and prove a version of the Sauer-Shelah lemma for subsets of Σ^n (The original Sauer-Shelah lemma deals with the case q = 2).
- 3. (a) Let S be a set of n points in ℝ^m. Let F be the family of subsets of S which are of the form S ∩ {x ∈ ℝ^d | Q(x) = 0} for some degree ≤ d polynomial Q(X₁,...,X_m) ∈ ℝ[X₁,...,X_m].
 Show that the VC dimension of F is at most (^{m+d}_d). Thus deduce an upper bound on |F|. Bonus: Show that this bound is tight.
 - (b) Let Q_1, \ldots, Q_k be polynomials in $\mathbb{R}[X_1, \ldots, X_m]$ of degree at most d. Let \mathcal{G} be the family of all subsets of [k] which are of the form $\{i \in [k] \mid Q_i(x) = 0\}$ for some $x \in \mathbb{R}^m$. For each $G \in \mathcal{G}$, let $Q_G(X_1, \ldots, X_m)$ be the polynomial $\prod_{i \notin G} Q_i(X_1, \ldots, X_m)$. Show that the Q_G , as G varies in \mathcal{G} , are linearly independent. Thus deduce an upper bound on $|\mathcal{G}|$.
- 4. Let *L* be a set of *s* nonnegative integers. Let $\mathcal{F} \subseteq {\binom{[n]}{k}}$ be such that $|A \cap B| \in L$ for distinct $A, B \in \mathcal{F}$. We will prove the uniform Ray-Chaudhuri Wilson inequality:

$$|\mathcal{F}| \le \binom{n}{s}.$$

(In class we showed the weaker inequality $|\mathcal{F}| \leq {n \choose s} + {n \choose s-1} + \ldots + {n \choose 0}$). For $A \in \mathcal{F}$, let $f_A(X_1, \ldots, X_n) \in \mathbb{R}[X_1, \ldots, X_n]$ be the polynomial

$$f_A(X_1,\ldots,X_n) = \prod_{\ell \in L} \left(\sum_{i \in A} X_i - \ell \right).$$

For $I \subseteq [n]$, let $v_I \in \{0,1\}^n$ be the indicator vector of I. For $J \subseteq [n]$, let $x_J : \{0,1\}^n \to \mathbb{R}$ be the function $x_J(v) = \prod_{j \in J} v_j$.

- (a) Suppose $f: \{0,1\}^n \to \mathbb{R}$ is such that $f(v_I) \neq 0$ for each $I \subseteq [n]$ with $|I| \leq t$. Show that the functions $(f \cdot x_J)_{|J| \le t}$ are linearly independent.
- (b) Show that the $|\mathcal{F}| + {n \choose 0} + {n \choose 1} + \ldots + {n \choose s-1}$ functions:

 - f_A with $A \in \mathcal{F}$, $x_J \cdot (\sum_{i=1}^n x_i k)$ with $|J| \le s 1$,

are all linearly independent.

(c) Deduce that $|\mathcal{F}| \leq {n \choose s}$.