Combinatorics I (Fall 2017) Rutgers University Swastik Kopparty

Due Date: November 16, 2012.

- Let f(c) equal the c-color Ramsey number R(3,3,...,3) (namely, the smallest integer n such that any c-coloring of the edges of K_n contains a monochromatic triangle).
 Show that (f(c₁ + c₂) 1) ≥ (f(c₁) 1) · (f(c₂) 1). Thus show that f(c) ≥ 5^{⌊c/2⌋}.
 What upper bound for f(c) does the proof of the Ramsey theorem from class give? Today it is unknown what the correct behavior for f(c) is.
- 2. Let $\delta \in (0, 1/2)$ be a constant. We want to find a subset C of $\{0, 1\}^n$ of size as large as possible such that no two elements have Hamming distance $\leq \delta n$. This is a discrete "sphere packing" problem. Express all your answers in terms of the binary entropy function H.
 - (a) Pick C to be a random set of size K. How large can you take K such that C has the desired property with probability at least 1/2?
 - (b) Use the method of alterations to find a larger set C with the desired property. How large can you make C this way?
 - (c) By a volume packing argument, show that no such C can have $|C| \ge 2^{(1-H(\delta/2)+o(1))n}$.
 - (d) Now we consider a dual covering problem. We want to find a subset C of $\{0,1\}^n$ of size as small as possible such that every element of $\{0,1\}^n$ is within Hamming distance ϵn of some element of C.
 - (e) How small a C can you find with this property?
 - (f) Show that no such C can have $|C| \leq 2^{(1-H(\epsilon)-o(1))n}$.
- 3. (Simultaneously big cuts): Let G_1, G_2, \ldots, G_k be graphs with the same vertex set V, edge sets $E_1, E_2, \ldots, E_k \subseteq \binom{V}{2}$. Show that for each $\epsilon > 0$, there exists a t depending only on ϵ, k , such that if $|E_i| > t$ for all i, then there exists a partition $V = S \cup T$ such that for each i, at least $(1/2 \epsilon)$ fraction of the edges in E_i go between S and T.
- 4. Let $\alpha, \beta \in (0, 1)$ be constants.
 - (a) Show that if $\beta > \alpha^2$, then there exists a collection of exponentially many subsets of [n] with size αn such that any two subsets of the collection have interesection size at most βn .
 - (b) Show that if $\beta < \alpha^2$, then any such collection has size at most $n^{O(1)}$.