
Homework 2

Combinatorics I (Fall 2017)
Rutgers University
Swastik Kopparty

Due Date: October 26, 2012.

1. Matchings and flows:

(a) Show that every bipartite k-regular graph has a perfect matching.

(b) Show that every doubly stochastic n×n matrix can be written as a convex combination
of permutation matrices.

(c) Prove Menger’s theorem: in any directed graph, the maximum number of edge-disjoint
s to t paths is equal to the minimum number of edges one has to delete in order to make
t unreachable from s.

2. Tight cases of the LYM inequality

(a) Let A ⊆
([n]
k

)
. Let

∂k,rA = {B ∈
(

[n]

r

)
| ∃A ∈ A with B ⊆ A}.

Show that
|∂k,rA|

(nr)
≥ |A|

(nk)
, with equality iff A =

([n]
k

)
.

(b) Suppose F ⊆ 2[n] is an antichain. Let Fk = F ∩
([n]
k

)
.

What can you say about the relationship between ∂k,rFk and ∂k′,rFk′?
(c) Use this to give another proof of the LYM inequality:

n∑
k=1

|Fk|([n]
k

) ≤ 1,

and show that equality holds iff Fk =
([n]
k

)
for some k.

3. In this problem, we will see a generalization of the Littlewood-Offord problem to vectors in
Rd.
A chain A1 ⊆ A2 . . . ⊆ Ak in 2[n] is called a symmetric chain if |Ai+1 = |Ai|+1 for each i, and
|Ak| = n− |A1|. A symmetric partition of 2[n] is a partition consisting entirely of symmetric
chains.

(a) Show that every symmetric partition of 2[n] has exactly
(

n
bn/2c

)
parts. (In fact, a sym-

metric partition has 1 part of cardinality n+ 1, and for each 1 ≤ i ≤ n/2 it has exactly(
n
i

)
−
(
n
i−1
)

parts cardinality n+ 1− 2i).

(b) Show how to construct a symmetric partition of 2[n] given a symmetric partition of 2[n−1].
(Note that this now gives us another proof of Sperner’s theorem.)
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(c) Let v1, . . . , vn ∈ Rd with |vi| ≥ 1 for each i (here | · | denotes the `2 norm). For A ⊆ [n],
let vA denote

∑
i∈A vi.

A family A of subsets of 2[n] is called sparse if for all A,B ∈ A, we have |vA − vB| ≥ 1.
A partition of 2[n] is called pseudo-symmetric if it has exactly 1 part of cardinality n+1,
and for each 1 ≤ i ≤ n/2 it has exactly

(
n
i

)
−
(
n
i−1
)

parts cardinality n+ 1− 2i.

Show (by induction on n) that 2[n] has a pseudo-symmetric partition where each part is
sparse.

(d) Deduce that

|{A ⊆ [n] | |vA| < 1/2| ≤
(

n

bn/2c

)
.

4. Let A1, . . . , Am ⊆ [n] and B1, . . . , Bm ⊆ [n] be such that:

• Ai ∩Bi = ∅ for each i.

• Ai ∩Bj 6= ∅ for each i 6= j.

Show that
m∑
i=1

1(|Ai|+|Bi|
|Ai|

) ≤ 1.

5. Use the Kruskal-Katona theorem to prove the Erdos-Ko-Rado theorem about 1-intersecting
families.

6. Look up Stirling’s formula and its proof (Not to be submitted).

For the rest of this problem, submit only the answers and do not submit your calculations.

Use Stirling’s formula to find an asymptotic formula for
(
n
αn

)
, where α ∈ [0, 1] is constant,

and n→∞.

Express your answer in terms of the “binary entropy function” H : [0, 1]→ [0, 1] defined by

H(α) = α log2
1

α
+ (1− α) log2

1

1− α
,

and H(0) = H(1) = 0. Draw of graph of H. Note the special case of α = 1/2 and think
about why that seems reasonable in terms of tossing n independent coins.

How large should c be for
∑c

i=0

(
n
i

)
to be Ω(2n)? How large should c be for

∑c
i=0

(
n
i

)
to be

at least Ω(2n/nk) for a given k > 0?

Hints

Littlewood-Offord: Without loss of generality, we may take vn to be the vector (α, 0, 0, . . . , 0)
where |α| ≥ 1. For each part A of a given sparse pseudo-symmetric partition of 2[n−1], produce up
to two parts of a sparse pseudo-symmetric partition of 2[n]; these produced parts will depend on
the first coordinates of the vectors {vA | A ∈ A}.

Ai’s and Bi’s: This generalizes one of the inequalities we saw in class. Try to adapt the proof of
that inequality.

Kruskal-Katona: For an intersecting family F ⊆
([n]
k

)
, consider the family G = {[n] \A | A ∈ F}.

How do F and G relate?
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