
Lecture 10 : Folded RS Codes, Local Decoding

Error-Correcting Codes (Spring 2016)
Rutgers University
Swastik Kopparty

Scribes: Harsha Tirumala & Amey Bhangale

1 Overview

In this lecture, we will continue studying the list decoding algorithm for folded Reed-Solomon codes
that we saw in the previous lecture. After that we will briefly go over two tricks on top of Folded
Reed-Solomon codes that improve the list decoding parameters.

In the second part, we will define what local decoding is and will give an algorithm for local decoding
of Hadamard code and Reed-Muller codes.

2 Folded Reed Solomon codes

2.1 Encoding Review

Definition 1. Let γ ∈ F∗q be a generator of the multiplicative group of Fq, and let s ≥ 1 be an
integer parameter where s divides q − 1. Then a Folded Reed Solomon code (FRS) is a code, C,
with alphabet Σ = Fsq, evaluation set S = {γ0.s, γ1.s, . . . , γ(((q−1)/s)−1)s}and C ⊆ Σ(q−1)/s is given
by

C := {(f(γis+0), f(γis+1), . . . , f(γis+s−1))
(q−1)/(s−1)
i=0 : f ∈ Fq[X], deg(f) ≤ d}

example codewords: c1 = (f(γ0), f(γ1), . . . , f(γs−1)) ; c2 = (f(γs), f(γs+1), . . . , f(γ2s−1))

• length of code = q−1
s = |S| = n

• alphabet Σ = Fsq

• Rate = d
q−1 = R ⇒ d = R(q − 1) = R.n.s

2.2 List decoding algorithm for FRS codes

Suppose we are given a message r. Although r consists of a (q − 1)/s-tuple of elements of Fsq, for
convenience we will view it instead as a function from {γ0, γ1, . . . , γq−s−1} to Fsq (where r(γis) is
simply the index i coordinate of the received tuple).
The FRS list decoding algorithm is very similar to that for Reed Solomon codes:

• Step 1 Find a polynomial Q(X,Y0, Y1, . . . , Ys−1) with Q(γis, r((γis)) = 0 for all i ≤ (q−1)/s

1

• Step 2 If P (X) ∈ Fq[X] is such that its codeword is close to r, then we consider h(X) =
Q(X,P (X), P (γX), . . . P (γs−1X))

By construction of Q, if r(γis) = (P (γis), P (γis+1), P (γis+2), . . . , P (γis+s−1)), then h(γis) =
0. Therefore, if r is close to the codeword of P , then h has many roots, which will imply
h(X) ≡ 0 (since h is of low degree).

• Step 3 We therefore will obtain that Q(X,P (X), P (γX), . . . P (γs−1X))) ≡ 0 whenever P is
close to r. Now we have to solve for all such P and we will be done.

The first two steps of the algorithm were analyzed in the previous lecture. We will now show how
to perform Step 3 in polynomial time.

2.3 Finding all candidate polynomials P

Given Q(X,Y0, Y1 . . . , Ys−1), the task is to find all the polynomials P (X) ∈ Fq[X] of degree ≤ d
such that Q(X,P (X), P (γX), . . . P (γs−1X)) = 0
This task is non-trivial even for s = 2. We look at a simpler problem now (which our current
problem eventually reduces to due to γ being a generator):

Given Q(X,Y0, Y1), find all polynomials P (X) of degree ≤ d such that Q(X,P (X), P (X)100) = 0.
Let Q̃(X,Y0) = Q(X,Y0, Y

100
0). If Q(X,P (X), P (X)100) = 0 then Q̃(X,P (X)) = 0

⇒ Y0 − P (X)|Q̃(X,Y0).

All that remains is to factorize Q̃(X,P (X)). This problem was easy because P (X)100 is directly
dependent on the output of P (X)(in general such a dependency may not arise). The upcoming
magic trick, however, reveals such a dependency between P (X), P (γX).

2.3.1 Magic Trick - Significance of the generator element γ

Let E(X) = Xq−1 − γ

Fact 2. Let q be the characteristic of F, α ∈ F and P (X) ∈ F[X] then P (αq) = P (α)q.1

Fact 3. Since γ is a generator, E(X) is irreducible.

Since E(X) = Xq−1 − γ, we have

Xq−1 ≡ γ(mod E(X))

⇒ Xq ≡ γX(mod E(X))

⇒ P (Xq) ≡ P (γX)(mod E(X))

⇒ P (X)q ≡ P (γX)(mod E(X)) (using Fact 2)

1See Lemma 6 from : http://www.math.rutgers.edu/~sk1233/courses/finitefields-F13/intro.pdf

2

http://www.math.rutgers.edu/~sk1233/courses/finitefields-F13/intro.pdf

So if
Q(X,P (X), P (γX), . . . P (γs−1X)) = 0 (1)

then

Q(X,P (X), P (X)q, P (X)q
2
, . . . P (X)q

s−1
) ≡ 0(mod E(X)) (2)

Except the mod E(x) condition this expression looks similar to the one in section 2.3. Rewriting
as coefficients of Y0, Y1, . . . Ys−1 :

Q(X,Y0, Y1 . . . , Ys−1) =
∑
~i

c~i(X)Y0
i0Y1

i1Y2
i2 . . . Ys−1

is−1

Consider the reduction map φ : Fq[X] → Fq[X]/E[X] ' Fqq−1 =: K. Define R(Y0, Y1 . . . Ys−1) =∑
~i φ(c~i(X))Y0

i0Y1
i1Y2

i2 . . . Ys−1
is−1 ∈ K[Y0, Y1, . . . Ys−1]

Let R̃(Y0) = R(Y0, Y0
q, Y0

q2 , . . . Y0
qs−1

) ∈ K[Y0]. Since K is a field, by the root finding property we
can find all α ∈ K satisfying R̃(α) in time poly(log |K|, q, deg(R̃)) = poly(qs, deg(Q)) where q is
the characteristic of the field K. Thus, we get a following claim:

Claim 4. If P (X) satisfies Equation(1) then φ(P (X)) satisfies R̃(φ(P (X))) = 0. So we find
φ(P (X)) among the α that we just found.

Once we have found all φ(P (X)), we can invert the map φ and get the polynomials P (X). Some
P (X) may not lie within the list decoding radius but that can be checked in polynomial time. The
important point is all P (X) that lie within the list decoding radius will be in the collection of
polynomials that we get after applying the inversion map.

The following caveats may arise in this process:

1. R(Y0, Y1, . . . Ys−1) = 0. But then E(X)|Q(X,Y0, Y1 . . . Ys−1). So we can handle this case by
replacing Q(X,Y0, Y1 . . . Ys−1) with Q(X,Y0, Y1 . . . Ys−1)/E(X) and continue with the same
process of root finding described above..

2. R(Y0, Y1, . . . Ys−1) 6= 0 but R̃(Y0, Y1 . . . Ys−1) = 0. This could happen but we will rule it out
by taking degYi(Q) < q. ⇒ each monomial of R leads to a unique monomial in R̃.

Finally since d < q we can convert Q to find P (X) with deg ≤ d; when we already know φ(P (X)).
Note that R 6= 0⇒ R̃ 6= 0

2.4 Almost final List decoding algorithm

1. Interpolate Q(X,Y0, Y1 . . . Ys−1) with (1, d, d . . . d) weighted degree ≤ D such that Q vanishes
with multiplicities M at each point (a, r(a)) where a ∈ S. This is possible if degrees of
freedom for Q are greater than the vanishing constraints being imposed, i.e. if:

≈ Ds+1

ds.(s+ 1)!
>

M s+1

(s+ 1)!
.n

3

D

M
> (ds.n)

1
s+1 = ((sRn)s.n)

1
s+1 = s

s
s+1R

s
s+1n

2. Take P (X) = Fq[X] of deg ≤ d such that codeword of P has ≥ A agreements with r. If
r(a) = (P (a), P (γa), P (γ2a) . . . P (γs−1a)), then h(X) = Q(X,P (X) . . . P (γs−1a)) vanishes
at a with multiplicity ≥M . So, h(X) has ≥ AM total zeroes (including multiplicities). Since
deg(h) ≤ D ⇒ If D < AM , then h(X) ≡ 0.
h(X) ≡ 0 ⇒ P satisfies the functional equation 1, so we can find it.

(works as long as A > D
M > (dsn)

1
s+1

2.5 Removing s
s
s+1 factor - Final Trick

Take the folded RS codes with folding parameters s and decode using t variate interpolation instead
of s+ 1 variate for some 1 << t << s (eg : t =

√
s)

Remembering things

(P (γ0), P (γ1), . . . P (γs−1)) ‖ (P (γs), P (γs+1 . . . P (γ2s))) ‖ . . . ‖ (P (γ(s−1)s), P (γ(s−1)s+1), . . . P (γs
2−1))

r(a) = r0(a) ‖ r1(a) ‖ r2(a) ‖ . . . rs−1(a)

Take sliding windows of size t i.e. re-bundle the received word ∈ Σ
q−1
s = Fsq

q−1
s to another received

word ∈ (Ftq)(s−t+1) q−1
s where new length n′ = (s− t+ 1) qs .

If the original received word had A agreements, the new received word has ≥ (s−t+1)A agreements.
Run the previous list decoding algorithm. This finds all P (X) of deg ≤ d such that agreement of

the codeword of P, r ≥ (dtn)
1
t+1 .

(folding parameter t , evaluation set = S.{1, γ, γ2, . . . γs−t}).
If A.(s− t+ 1) ≥ (dt.(s− t+ 1). q−1

s)
1
t+1 then P (X) will be found, i.e. if

A >
1

s− t+ 1
(dt.(s− t+ 1).n)

1
t+1

A >
1

s− t+ 1
(Rtstnt(s− t+ 1)n)

1
t+1

A >
1

s− t+ 1
R

t
t+1 (stnt(s− t+ 1))

1
t+1n

A > (R+ ε)n

By choosing s >> 1, t =
√
s this gives a list decoding algorithm from 1−R− ε fraction errors with

lists in time poly(qs) = npoly(1
ε
) with list size = npoly(1

ε
) and alphabet size npoly(1

ε
)

3 Local Decoding

Let’s start with a basic question about complexity of decoding a codeword; How much time do we
need to decode a code C ⊆ Σn? - at least logΣ |C| (size of the output)

4

Till now what we saw is how to encode a message of length k into a codeword of length n. If
a received word is not very far from a correct codeword then we saw decoding algorithms which
decode the received word to the closest codeword. Finally from the encoding map, we can recover
the original message.

But now suppose, instead of knowing the complete message we are only interested in the message
restricted to a few locations. This is exactly the setting of local decoding. More formally, the local
decoding problem can be described as:

Local Decoding: Let C ⊆ {0, 1}n be a code and the encoding map be E : {0, 1}k → C. Given
r ∈ {0, 1}n and i ∈ [k] such that ∆(r, E(m)) < ρ for some m ∈ {0, 1}k. Find mi.

Since in this case the output size is just a bit (or log of the message alphabet size in general), the
basic question is: do we need to run in time Ω(k) for this? and the answer to this question is NO!

Let’s first define the model and want operations cost us. One can study the complexity of an
algorithm in terms of the running time. The other measure of complexity of a decoding algorithm
is the number of locations queried by the algorithm from the input/received word. We’ll study the
local decoding algorithms w.r.t. the later complexity measure.

Random access model: Accessing any given location in a received word is counted as one
operation.

The decoder algorithm will be randomized and we would like the failure probability to be a small
constant, say 0.01.

Let’s define a class of locally decodable codes based on the number of locations an algorithm needs
to access in order to recover any given location of a message and a fraction of errors that it can
tolerate.

Definition 5 ((t, ε)-locally decodable code). C ⊆ Σn, with an encoding map E : Σk → Σn, is
(t, ε)-locally decodable code if there exists an algorithm A such that for all messages x ∈ Σk, r ∈ Σn

and i ∈ [k] such that ∆(r, E(x)) ≤ ε,

Pr[A(i, r) 6= xi] ≤ 0.01

and A accesses at most t co-ordinates from r.

Designing a code that supports local decoding is part of the problem: Not every code with good
distance property supports a local decoding Ex. Reed-Solomon codes with d=n/2; One has to
read at least n/2 locations of a received word to decode a message symbol at a particular location.
(exercise!)

3.1 Local decoding of Hadamard code

Recall that Hadamard code of length n = 2k is the set of truth tables or evaluations of all linear
functions on k variables. For this particular local decoding algorithm to work, we only take non
constant functions. More formally, the Hadamard code CH ⊆ {0, 1}n is

CH = {f : Fk2 → F2 | ∃a ∈ Fk2 \ 0k and f(x) = 〈a, x〉 for all x}

5

Thus, |CH | = 2k − 1. Given a message a ∈ {0, 1}k \ 0k of length k, the encoding is given by the
linear function la : Fk2 → F2 where la(x) = 〈a, x〉. As we have seen earlier, the distance between
any two codewords is exactly 1/2.

In a local decoding context, we have given a function r : Fk2 → F2 (received word) and i ∈ [k] such
that ∆(r, la) ≤ 0.01 for some a ∈ Fk2 \ 0k. The task is to locally decode the ith bit of the original
message i.e the bit ai in this case.

Algorithm:

1. Pick x ∈ Fk2 u.a.r.

2. Query r at x and x+ ei

3. Output r(x) + r(x+ ei).

Analysis: First note that this algorithm outputs a correct answer with probability 1 if there is
no error in the received codeword. The reason is, if r = la for some a then r(x) + r(x + ei) =
la(x) + la(x + ei) = la(x) + la(x) + la(ei) = la(ei) = 〈a, ei〉 = ai where in the second equality we
used the fact that la is a linear function.

Let’s analyze the error probability if ∆(r, la) ≤ 0.01. Since we sampled x u.a.r we have

Pr[r(x) 6= la(x)] ≤ 0.01

Also, the distribution on x+ ei is uniform in Fk2 and hence we have

Pr[r(x+ ei) 6= la(x+ ei)] ≤ 0.01

Thus, using union bound we get,

Pr[r(x) 6= la(x) ∨ Pr[r(x+ ei) 6= la(x+ ei)] ≤ 0.02

and hence, with probability at least 0.98, both the queried locations are uncorrupted and when this
event happens, we get r(x) + r(x+ ei) = la(x) + la(x+ ei) = ai as above.

Remark 6. The Hadamard code can be locally decoded with 2 queries but the encoding size is
exponential in the message length. It turns out that this cannot be avoided i.e. Every 2 query locally
decodable code must have codeword of length 2Ω(k) where k is the message length [GKST02, KD03].

3.2 Local Decoding of Reed-Muller code

In Reed Muller code, we look at the evaluations of m-variate degree d polynomials over Fmq . Notice
that RM codes are generalization of Hadamard code where (in Hadamard code) the codewords are
evaluations of linear (degree 1) functions over F2.

6

We will slightly modify the encoding map for RM codes that we saw in lecture 32. We do this
modification to ensure that message string stay as it is in some subset of locations of the correct
encoding. For this, pick any subset S ⊆ Fmq of size

(
m+d
d

)
such that specifying values of a degree

d polynomial at these points in S uniquely defines the polynomial. There are many such subsets
(exercise!). From now onwards we let S be one of these subsets.

Given a message (evaluations on S) g : S → Fq, using the above argument, extend it to all Fmq . In
other words, encoding of g is the evaluation of unique polynomial f of degree d such that f|S = g.

In this section, we’ll see how to locally decode RM code (for d ≤ q−2) with the above encoding when
the fraction of errors is at most say 1/100q. In the next section, we will remove the dependence of
q from the error bound.

Setup : Given r : Fmq → Fq (received word) and x ∈ S such that ∆(r, f) ≤ 1
100q where degree(f) ≤

d ≤ q − 2 find f(x).

Informally, the algorithm is as follows: We query the received word at bunch of points from Fmq
such that every query point is uniformly distributed in Fmq . The only place we use this uniformity of
query points is to bound the probability that all the queried points are uncorrupted. Importantly,
we choose the query points carefully so that the correct codeword restricted to the queried locations
is evaluation of a low degree univariate polynomial, say h(X), and the required message bit is h(0).
Thus, if all the queried locations are uncorrupted then we can interpolate the correct polynomial
and thus can compute h(0).

Algorithm:

1. Pick ~y ∈ Fmq u.a.r.

2. For each α ∈ F∗q , let ~zα = ~x+ α~y.

3. Query all r(~zα).

4. Let U : F∗q → Fq be such that U(α) = r(~zα) for all α ∈ F∗q .

5. Let h(X) be the unique polynomial of degree at most d that agrees with U . If there does not
exists such polynomial then output fail.

6. Output h(0).

Remark 7. The set L = {~zα = ~x+α~y | α ∈ Fq} is a line in Fmq passing through ~x in the direction
~y. As we are picking the direction ~y (step 1) uniformly at random, step 3 of the algorithm is
basically querying all but one point from a random line in Fmq passing through ~x. See figure 1.

Analysis: We analyze the algorithm by stating a simple observation.

Observation 8. For each α ∈ F∗q, ~zα is uniformly distributed on Fmq .

2http://www.math.rutgers.edu/~sk1233/courses/codes-S16/lec3.pdf (section 2)

7

http://www.math.rutgers.edu/~sk1233/courses/codes-S16/lec3.pdf

Fmq

S

line ~x+ s~y

~x

~zα

corruptions

Figure 1: Illustration of local decoding of RM code

Given the condition that ∆(r, f) ≤ 1
100q , for a fix α ∈ F∗q , using observation 8, we have

Pr[r(~zα) 6= f(~zα)] ≤ 1

100q
.

Thus by union bound, we have

Pr[∨
α∈F∗q

r(~zα) 6= f(~zα)] ≤ 1

100
.

Hence, with probability at least 0.99, all the queried locations are the correct encoded values. We
will now proceed with the analysis given that this event happens.

We have, U(s) = f(~x + s~y) for all s ∈ F∗q . Note that f(~x + s~y) for fixed vectors ~x and ~y is an
univariate degree d polynomial in a variable s. Thus, U is the evaluation of degree d polynomial
on F∗q . Since d ≤ q − 2, these evaluations uniquely define a degree d polynomial. Hence, step 5
of the algorithm succeeds and we have h(s) = f(~x + s~y) for all s ∈ Fq. Substituting s = 0 gives
h(0) = f(~x) as required.

Local decoding with constantly many queries: Let us fix the parameters from the above
local decoding algorithm. Let’s set q = c, a constant and d = q − 2. Then, the code parameters
are:

1. Length of a code, n = qm

2. Length of message, k = |S| (number of m-variate monomials of degree at most d) =
(
d+m
d

)
≈

md

d! = mq−2

(q−2)!

8

Thus, n = 2O(k
1
q−2) = 2O(k

1
c−2) for a constant c. Also, from the above algorithm the query

complexity is t = q − 1 = c − 1 a constant. Hence, for these setting of parameters, we get a code
whose length is exponential in the message length (rate is not a constant) but it can be locally
decoded using only constantly many queries from a constant fraction of error!

Remark 9. For a general t > 2 (a constant) number of queries, n ≥ k1+O(1/t) [Woo07] i.e. a
locally decodable code with a constant number of queries cannot have a constant rate!

Big open question - Can we have t = O(log k) query locally decodable code with constant rate?

The important part of the analysis is to recover the univariate polynomial f(~x + s~y) (for any
~y) by querying few locations. In the above analysis, we argued that if all the locations queried
are uncorrupted then we can recover the univariate polynomial. For this event to happen with
constant probability, we needed that the fraction of errors is at most O(1/q). But this problem
of recovering a polynomial from its evaluation, with possibly few corruptions, is exactly the same
as Reed-Solomon decoding. From the decoding algorithm of RS codes, we know that even if few
locations corresponding to evaluation of a univariate polynomial are corrupted, we can recover
the polynomial efficiently (Berlekamp-Welch algorithm). Thus, we will incorporate this fact in
the above algorithm and get an improved (in terms of error fraction) local decoding algorithm for
Reed-Muller codes.

3.3 Improved Local Decoding of RM Codes

Here again the setup is the same as above except the fact that we will set d ≤ q/2 in order to
tolerate constant fraction error in Reed-Solomon decoding as briefly described above.

Setup : Given r : Fmq → Fq (received word) and x ∈ S such that ∆(r, f) ≤ 1
100 where degree(f) ≤

d ≤ q
2 find f(x).

Algorithm:

1. Pick ~y ∈ Fmq u.a.r.

2. For each α ∈ F∗q , let ~zα = ~x+ α~y.

3. Query all r(~zα).

4. Let U : F∗q → Fq be such that U(α) = r(~zα) for all α ∈ F∗q .

5. Find a polynomial h(X) ∈ Fq[X] of degree at most d such that ∆F∗q (h, U) < 1/4 using
Berlekamp-Welch algorithm. If there does not exists such polynomial then output fail.

6. Output h(0).

Analysis: For any fixed α ∈ F∗q , using observation 8, we have

Pr[r(~zα) 6= f(~zα)] ≤ 1

100
.

9

Thus in expectation, the number of queried locations that are corrupted is

E[number of corruptions on a line] ≤ q − 1

100

By Markov’s inequality,

Pr[number of corruptions ≥ 25
q − 1

100
] ≤ 1

25
.

Thus, with probability at least 24/25, out of q− 1 queried points on a line, at most 1/4 th fraction
of the locations are corrupted. Since d ≤ q/2, the fraction of corrupted locations on a line is strictly
less than half the minimum distance. Hence, Berlekamp-Welch algorithm decodes the polynomial
f(~x+ s~y) =: h(s) correctly. Therefore, h(0) = f(~x) as required.

Locally decodable code with constant rate and sublinear query complexity: Fix m =
Θ(1) to be a constant and q = n1/m where n is growing. Set d = q/2. We have

1. Message length, k =
(
d+m
m

)
≈ dm

m! .

2. Codeword length = n.

Thus, rate of the code is k
n = dm

m!
1
qm = 1

m!
1

2m = Θ(1). With these settings, we get a constant rate
code which is locally decodable from a constant fraction error with query complexity t = q − 1 ≈
n1/m = O(k1/m) which is sublinear in the message length!

In the subsequent lectures, we will see following improvements:

1. A constant query locally decodable code where the codeword length is subexponential in the

message length n = 22
√
logk

.

2. Constant rate R = ε and query complexity t = k(1−δ) where ε, δ are independent constants
(unlike the above settings of parameters in improved RM local decoding) and k is the message
length.

References

[GKST02] O. Goldreich, H. Karloff, L. J. Schulman, and L. Trevisan. Lower bounds for linear
locally decodable codes and private information retrieval. In Computational Complexity,
2002. Proceedings. 17th IEEE Annual Conference on, pages 143–151, 2002.

[KD03] Iordanis Kerenidis and Ronald DeWolf. Exponential lower bound for 2-query locally
decodable codes via a quantum argument. In Proceedings of the thirty-fifth annual
ACM symposium on Theory of computing, pages 106–115. ACM, 2003.

[Woo07] David Woodruff. New lower bounds for general locally decodable codes. In ECCC, 2007.

10

	Overview
	Folded Reed Solomon codes
	Encoding Review
	List decoding algorithm for FRS codes
	Finding all candidate polynomials
	Magic Trick - Significance of the generator element

	Almost final List decoding algorithm
	Removing factor - Final Trick

	Local Decoding
	Local decoding of Hadamard code
	Local Decoding of Reed-Muller code
	Improved Local Decoding of RM Codes

