
Lecture 1: Basic problems of coding theory

Error-Correcting Codes (Spring 2016)
Rutgers University
Swastik Kopparty

Scribes: Abhishek Bhrushundi & Aditya Potukuchi

Administrivia was discussed at the beginning of this lecture. All the information about the course
can be found on the course web page: http://www.math.rutgers.edu/ sk1233/courses/codes-
S16/.

1 Basic concepts, definitions, and facts

1.1 Definitions

For most part of the course, n will denote a parameter taking values in N.

Definition 1 (Hamming distance). The Hamming distance between x, y ∈ {0, 1}n is defined as the
number of coordinates in which x and y differ. We shall denote the Hamming distance between x
and y by ∆(x, y).

A related notion is that of Hamming weight :

Definition 2 (Hamming weight). For x ∈ {0, 1}n, the Hamming weight of x, denoted by wt(x) or
|x|, is defined as ∆(x, 0), where 0 denotes the all zero vector.

Even though we defined the above concepts for strings over {0, 1}, one can extend them to strings
over an arbitrary alphabet Σ in a natural manner.

The reader can easily check the following:

Fact 3. For x, y, z ∈ {0, 1}n, ∆(x, y) + ∆(y, z) ≥ ∆(x, z). Also, ∆(x, y) ≥ 0, and equality holds iff
x = y. Another way of saying this is that ∆(., .) is a metric on {0, 1}n.

We are now in a position to define what a code with minimum distance d is:

Definition 4 (Code with minimum distance d). A code with minimum distance d in {0, 1}n is
a subset C ⊆ {0, 1}n with the property that minx,y∈C,x6=y∆(x, y) = d. d is called the minimum
distance of the code C.

Note that the notion of minimum distance is well defined for any subset of {0, 1}n. Before we go
on, we introduce yet another useful concept.

Definition 5 (Hamming ball). The Hamming ball of radius r centered around c ∈ {0, 1}n is the
set {y ∈ {0, 1}n, ∆(y, c) ≤ r}. We will denote it by Bn(c, r), though it’s typical to drop the n in
the subscript when it’s clear that we are working over {0, 1}n.

1

1.2 A short discussion on error correction

What does error correction have to do with the combinatorial objects defined above? Let’s consider
the following scenario: Alice is on Earth and Bob’s on the Moon. They are sending messages to each
other, where the messages come from a subset C of {0, 1}n. Given the huge distance between them,
it’s conceivable that whenever a message is sent, some of its bits get corrupted (flipped). As we
shall see later, it’s reasonable to assume that whenever a message x ∈ C ⊆ {0, 1}n is transmitted,
at most t of its bits get corrupted. Alice and Bob want to be able to recover the original message
from a corrupted one.

Let us suppose that the set C had minimum distance d. How much error can be tolerated, i.e. how
large can t be?

Claim 6. t ≤ bd−1
2 c

Proof. Suppose d < 2t + 1. Let c1 and c2 be in C such that ∆(c1, c2) = d. It follows that there
is a string x ∈ {0, 1}n such that ∆(x, c1) ≤ t and ∆(x, c2) ≤ t. Now suppose Alice sends c1 to
Bob and it gets corrupted with ≤ t errors and becomes x when it reaches Bob. Bob has no way to
tell whether Alice had sent c1 or c2 since both can be corrupted with ≤ t errors and be made into
x.

But what happens when t ≤ bd−1
2 c? Can the original codeword be recovered? The following fact,

which follows trivially from the triangle inequality, tells us that recovery is possible in this regime:

Fact 7. Let C be a code with minimum distance d. For any c, c′ ∈ C, c 6= c′, we have that
B(c, bd−1

2 c) is disjoint from B(c′, bd−1
2 c).

Proof. We will give a proof by contradiction. Suppose x ∈ B(c, bd−1
2 c) ∩ B(c′, bd−1

2 c). Then

∆(x, c) ≤ bd−1
2 c and ∆(x, c′) ≤ bd−1

2 c, and by triangle inequality, we have ∆(c, c′) ≤ d − 1 < d,
which is a contradiction.

Thus, we want the minimum distance to be as large as possible in order to be able to tolerate a
large number of errors. But then one might argue, why not just take C to be the set containing
the all zero string and the all one string, making the distance n? The reason is that we not only
want large distance, but also want |C| to be large. Why?
Let’s say that Alice and Bob have come up with a way to identify the integers 1, . . . , |C| with the
elements of C. Now whenever Alice has a number in her mind that she wants to convey to Bob,
all she has to do is to send the element of C corresponding to that number. But, for doing this,
she has to send a string of length n. It is easy to see that integers between 1 and |C| can be
represented using roughly log |C| bits, and so if |C| << 2n, then Alice and Bob are being wasteful
- the “effective” amount of information being sent in the n bits is log |C| << n.

1.3 The main questions

The above discussion raises the following questions:

1. Given n, d, how large can C ⊆ {0, 1}n be such that C has minimum distance d?

2

2. Given n, d, how can one “efficiently” construct a code in {0, 1}n with minimum distance d?

3. Given n, d, a code C ⊆ {0, 1}n with minimum distance ≥ d, and an x ∈ {0, 1}n with the
property that there is a (unique) c ∈ C such that x ∈ B(c, d−1

2), how can one “efficiently”
decode x, i.e. how does one efficiently find c?

For this lecture, we will mostly focus our attention on the first question.

2 Basic results

We begin by giving some basic existence and impossibility results about the number of codewords
in a code with minimum distance d. We will always be interested in the asymptotics of n → ∞.
Particularly interesting choices of d are (1) constant distance d = O(1), and (2) constant relative
distance d = δn.

2.1 The volume bound

Set r = bd−1
2 c. It follows from Fact 7 that

|
⋃
c∈C

B(c, r)| =
∑
c∈C
|B(c, r)| = |C| · |B(r)|.

Also ⋃
c∈C

B(c, r) ⊆ {0, 1}n

and so we have
|
⋃
c∈C

B(c, r)| ≤ 2n

which gives us

|C| ≤ 2n

|B(r)|
.

Thus,

|C| ≤ 2n∑b(d−1)/2c
i=0

(
n
i

)
This bound is known as the volume bound or the Hamming bound.

2.2 The greedy construction

A greedy approach: Consider the following greedy process:

• Set S = {0, 1}n and let C = ∅.

• As long as S 6= ∅, pick a point v ∈ S and add v to C. Remove B(v, d − 1) from S, i.e.
S = S \B(v, d− 1).

3

Notice that we are removing at most
∑d−1

i=0

(
n
i

)
points from S in every iteration. Since we add one

element to C in each iteration, we have that

|C| ≥ 2n∑d−1
i=0

(
n
i

)
Using the fact that d = O(1), we get

|C| = Ω(
2n

nd−1
)

Note that this bound does not match the volume bound that we proved. It’s conceivable that a
modification of this approach might give better bounds though this has eluded everyone till date.

2.3 A probabilistic construction

It turns out that randomly chosen codes also achieve roughly the same parameters as the greedy
construction. However, some care is needed in the random choice, as shown by the following failed
attempt. See the homework and the next lecture for more on this.

Naive probabilistic approach: A naive probabilistic approach is to pick K vectors, x1, . . . , xK ,
in {0, 1}n uniformly and independently, and set C = {x1, . . . , xK}.

Fact 8 (Birthday Paradox). If we pick Θ(
√
N) numbers between 1 and N uniformly and indepen-

dently then, with probability ≥ 0.9, at least two of them will be the same.

Thus, if K = Θ(2n/2), with probability 0.99, it would be the case that xi = xj for some i 6= j. In
fact, it’s not hard to see that, even if we don’t worry about duplications, with high probability, two
of the strings will end up being in the same ball of radius d− 1, which would thwart our attempt.

A probabilistic approach with alterations: This approach involves picking strings uniformly
and independently as above, followed by doing some modifications to the set in order to get the
distance property. [See the first homework set]

3 Constant distance codes

Consider the case when n is a growing parameter, and d is a fixed constant, i.e. d = O(1). In this
case, the volume packing bound says that:

|C| ≤ O
(

2n

nb(d−1)/2c

)
.

The greedy code construction produces a code C with

|C| ≥ Ω

(
2n

nd−1

)
.

These bounds are roughly in the same ball-park, but they are still significantly off. In a later lecture
we will see that in fact the volume packing bound is tight: this is by a remarkable algebraic family
of codes known as BCH codes.

4

4 The d = 3 case: the Hamming code

For d = 3, the volume bound becomes

|C| = O

(
2n

n

)
We will show a construction that gives a code with |C| = Θ(2n/n), thus resolving our question for
d = 3. This code is known as the Hamming code, and is due to Richard Hamming who also showed
the volume bound.

We identify {0, 1} with the field F2, and think of the code as a subset of Fn2 . Let ` ∈ N be a
parameter, and H be the ` × (2` − 1) matrix whose columns consist of all non-zero vectors in F`2.
We set n = 2` − 1 and define our code as

C = {c ∈ Fn2 ; Hc = 0}

The reader can check that C is a subspace of Fn2 whose dimension is n− `1. Thus, we have

|C| = 2n

2`
=

2n

n+ 1
= Θ

(
2n

n

)
All that remains to be shown is that the minimum distance of C is 3. We will do this by showing
that the minimum distance of C cannot be 1 or 2. Before we show this, we will take a slight detour
to talk about some properties of codes that are subspace in Fn2 .

The following is an easy fact:

Fact 9. Let u, v, w ∈ Fn2 . Then ∆(u, v) = ∆(u⊕ w, v ⊕ w).

If a code is a subspace of Fn2 , it is called a linear code. We will study more properties of linear
codes in the next lecture, but here is a fact that we will need for now:

Fact 10. If C is a linear code with minimum distance d then minc∈Cwt(c) = d, where wt(.) denotes
the Hamming weight function.

Proof. We will first show that minc∈Cwt(c) ≥ d. Since C has minimum distance d there are
codewords c1, c2 ∈ C such that ∆(c1, c2) = d. Using Fact 9, ∆(c1⊕ c2, 0) = d, which is the same as
wt(c1 ⊕ c2) = d. Since C is a linear code c1 ⊕ c2 ∈ C and we have minc∈Cwt(c) ≥ d.
We will now show the other direction. Suppose there is a c ∈ C such that wt(c) < d. Since C is
a linear code and hence a subspace, we have that 0 ∈ C. Then, ∆(c, 0) < d, which would be a
contradiction since the minimum distance of C is d.

We now get back to showing that the minimum distance of the Hamming code is 3. By Fact 10,
this is the same as showing that there are no codewords of Hamming weight less than 3.
Case i - there is a codeword c such that wt(c) = 1: From the definition of the Hamming code,
we have Hc = 0. But this is not possible since Hc is a column of H, and all the columns of H are
non-zero.

1This follows from the rank-nullity theorem over F2. The reader is urged to try and prove the theorem over F2 if
he or she hasn’t done so before.

5

Case ii - there is a codeword c such that wt(c) = 2: Again, Hc = 0, and Hc = v ⊕ w, where
v, w are distinct columns of H. This means v ⊕ w = 0 or v = w, which is a contradiction.
This shows that the minimum distance of the Hamming code is at least 3.

Codes that match the volume bound are called perfect codes and the Hamming code is such a code
for the d = 3 case. We now try and answer the third question in Section 1.3 for the Hamming code,
i.e. given x ∈ {0, 1}n such that ∆(x, c) ≤ 1 for some c ∈ C, how do we “efficiently” find c?

Typically, “efficiently” here means that the running time of our recovery algorithm should be
polynomial in n, the input size. In the case of the Hamming code, polynomial time is trivial, since
one can try all 1-bit modifications of x and check if that resulting string is in the code. This gives
a quadratic time decoding algorithm.

Below we give a linear time decoding algorithm.

1. Given x, compute Hx. This involves multiplying a Θ(log n)×n matrix with an n× 1 vector,
which can be done in time. Θ(n log n).

2. If Hx = 0, then x ∈ C. Otherwise x = c + ei for some c ∈ C, where ei is the vector in Fn2
which is 0 everywhere except in the ith coordinate. Then H(c+ ei) = Hc+Hei = Hei.

3. Note that Hei is the ith column of H. We now want to compute i given Hei. This can be
done by comparing Hei with all the columns of H, and takes time O(n log n).

4. Once i is determined, we can compute c as x+ ei.

Thus, we have an algorithm to recover c that takes time Θ(n log n). This can be made Θ(n) by
divide and conquer: exercise!

5 More on linear Codes

Recall that a code C ⊆ Fn2 is said to be linear if it is a subspace of Fn2 . The definition of linear
codes allows us to succinctly represent the code by selecting a basis v1, v2, . . . , vk of C where k ≤ n.
It also allows a bijection between {0, 1}k and C as follows: for a σ ∈ {0, 1}k, the corresponding
codeword is c(σ) =

∑k
i=1 σ1vi ∈ Fn2 . To this extent, let G be a matrix with k rows and n columns,

where the ith row is vTi .

G =


————— vT1 —————
————— vT2 —————

...
...

...
————— vTk —————


The matrix G is called the Generator Matrix for C. The map E : Fk2 → Fn2 given by E(m) = mG is
called the Encoding Map. Here, one normally thinks of m as a message (given by a binary string)
and E(m) as the encoding of m.

Fk2
Encoding−−−−−−→ Fn2

Corrupt−−−−−→ Fn2
Decoding−−−−−−→ Fk2

6

Since linear codes are nothing but vector spaces, we define a Dual Code C⊥ of a linear code C ⊂ Fn2 ,
analogous to dual spaces, as follows:

C⊥ := {y ∈ Fn2 |
n∑
i=1

xiyi = 0 for all x ∈ C}

Observation 11. (C⊥)⊥ = C

Observation 12. From the rank-nullity theorem, we have dim(C) + dim(C⊥) = n.

A Parity Check Matrix for a linear code C ⊂ {0, 1}n is an (n−k)×nmatrix with rows wT1 , w
T
2 , . . . , w

T
n−k,

where w1, w2, . . . , wn−k are the basis vectors for C⊥

H =


————— wT1 —————
————— wT2 —————

...
...

...
————— wTn−k —————


Observation 13. c ∈ C iff Hc = 0

Observation 14. GHT = 0

The above observation is the main property of the Parity Check Matrix.

Proposition 15. The following are equivalent:

1. C has minimum distance at least d

2. Every nonzero element of C has at least d non zero entries

3. Every d− 1 columns of H are linearly independent.

Proof. (1 ⇒ 2): Since 0 ∈ C, we have that for every x ∈ C, where x 6= 0, ∆(x, 0) ≥ d. Therefore,
x has at least d nonzero entries.

(2 ⇒ 3): Since Hx = 0 implies x ∈ C, if the sum of some t < d columns in H was equal to 0, then
we have a codeword that has t < d nonzero entries, which is a contradiction.

(3 ⇒ 1): Suppose there existed x, y ∈ C such that ∆(x, y) < d, we have Hx = Hy = 0, which
gives us H(x+ y) = 0. But since x+ y had less than d nonzero entries, the sum of < d columns in
H equal to 0, which is a contradiction

5.1 Larger Alphabets

So far, we have thought of all of our messages, and their encodings as binary strings. However,
in general, we need not be restricted by this condition. Let Σ be any finite set of alphabet which

7

make up the content of the messages. We can extend the definition of Hamming distance between
two strings x and y in this alphabet to be the number of points where they differ. We can also get
a similar ‘volume packing’ bound as before. Let C be code over the alphabet Σ that can correct at
most r errors. Let Bn

Σ
(r) be the set of strings in Σn, that differ in at most r points from a given

string. Then, we have:

|C| ≤ |Σ|n∣∣∣∣Bn
Σ

(r)

∣∣∣∣
We can also pick words greedily to get a lower bound on the number of code words with minimum
distance d:

|C| ≥ |Σ|n∣∣∣∣Bn
Σ

(d)

∣∣∣∣
However, to talk about linear codes, we can only use certain sizes of alphabet, in particular, if |Σ|
is either a prime, or a prime power, we can identify Σ with a field Fp or Fpl , and talk about linear
codes as subspaces of Fnp or Fn

pl
.

We can define a Generator Matrix similar to the binary case as a k×n matrix G, where the rows are
a basis of C. We also define a dual code C⊥ as before, and a Parity Check Matrix as an (n− k)×n
matrix whose rows are a basis of C⊥.

A few remarks:

1 Even if you only care about binary codes, the study codes over larger alphabet sizes is very
important, since some of the best known constructions of binary codes are by using codes
over larger alphabet sizes.

2 Imposing the condition of linearity on codes does not seem to come with any disadvantages.
We do not know any considerable differences between codes and linear codes.

6 Erasure Correction

In the regime of Erasure Correction, a codeword is given by a string x ∈ {0, 1}n. However, instead
of being flipped, some bits are replaced with the symbol ‘?’. These can be thought of as erasures,
i.e., the bits in those location have been erased.

Our goal is to design a code that is resilient to at most t erasures. In other words, if C is a t−erasure
code, then for every c ∈ C, and for every set of t coordinates, if we erase these t coordinates, then
c should not match with any other string in C in the remaining n− t coordinates.

Observation 16. A code C is t−erasure iff it has minimum distance at least t+ 1.

Observation 17. Hamming code is 2−erasure.

8

7 Constant relative distance

Now we study the regime where the distance of the code is δn.

The rate of a binary code C, given by log2 |C|
n , is a measure of how much information each coordi-

nate contains (there are log2 |C| bits of information needed to specify a codeword in C, and this
information is then written in the form of n bits). For a code over a general alphabet Σ, the rate

is given by
log|Σ| |C|

n .

The Relative Minimum Distance (or simply relative distance) of a code C ⊆ {0, 1}n with minimum
distance d is given by d

n .

Before we study the relation between the rate and minimum distance of a code, we establish the
following useful estimate for the volume of the Hamming ball. For any positive constant ρ < 1

2 , we
have:

|Bn(ρn)| = Θ

(
2H(ρ)n

√
n

)

where H(ρ) is called the Shannon Entropy given by H(ρ) = ρ log2
1
ρ+(1−ρ) log2

1
1−ρ . This intimate

relation to the volumes of Hamming balls is the reason that the function H shows up so much in
the study of codes.

The following plot shows the relation between ρ and H(ρ). It is symmetric about ρ = 1/2, where it
takes its maximum value, H(1/2) = 1, and is 0 at ρ = 0, and ρ = 1.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ρ

H
(ρ

)

9

7.1 Upper Bound

From the Volume Packing Bound, we have

|C| = O

 2n

2H(δ/2)n√
n


Taking logarithms on both sides and dividing by n, we have

R ≤ 1−H
(
δ

2

)
+ o(1)

7.2 Lower Bound

Using the greedy approach as before, we get

|C| ≥ 2n

|Bn(δn− 1)|
= Ω

 2n

2H(δ)n√
n


Taking logarithms on both sides and diving by n,

R ≥ 1−H(δ) + o(1)

7.3 The story so far..

So far, we know that for a positive constant δ < 1
2 , there cannot exist codes of rate more than 1−

H(δ/2)+o(1) (Volume Packing Bound), and that there exist codes with rate at least 1−H(δ)+o(1).
These are illustrated in the following plot.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

low
er

bound

upper
bound

δ

R

10

The upper bound is not tight for every δ. For instance, we know that there do not exist codes with
nonzero rate with relative distance 3/4 (Exercise!). In the next lecture, we will see that in fact,
there are no codes with nonzero rate with relative distance ≥ 1/2, and give a somewhat better overall
upper bound.

11

