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1 Introduction and class logistics

o See
http://www.math.rutgers.edu/"sk1233/courses/additive-F16/

for the course website (including syllabus).

e (lass this Thursday is cancelled. We will schedule a makeup class sometime.

Office hours: Thursdays at 11lam.

References: Tao and Vu, Additive combinatorics, and other online references (including class notes).

Grading: there will be 2 or 3 problem sets.

2 How small can a sumset be?
Let A, B be subsets of an abelian group (G, +). The sumset of A and B, denoted A + B is given by:
A+B={a+b|lacAbec B}.

We will be very interested in how the size of A + B relates to the sizes of A and B (for A,B finite).

Some general comments. If A and B are generic, then we expect |A + B| to be big. Only when A and B
are very additively structured, and furthermore if their structure is highly compatible, does |A 4+ B| end up
small.

If G is the group of real numbers under addition, then the following simple inequality holds:

|A+B| > |A|+|B| - L.

Proof: Let A = {ay,...,ar} where a; < as < ... < ag. Let B = {b1,...,be}, where by < ... < by. Then
a1+b <a1+by<...<ayj+b<as+by <az+bs <...<ap+b, and thus all these elements of A+ B are
distinct. Thus we found |A| + |B| — 1 distinct elements in A + B. Equality is attained if and only if A and
B are arithmetic progressions with the same common difference (In case of equality we need to have either
a; + bj =a1 + bj+i_1 or a; + bj = Git+j—0+ b@)

Now let us move to a general group. Then at the very least we have |A + B| > max{|A|, |B|}.

Equality can hold, for example if A = B is a subgroup of G. In fact, every equality case is closely related to
this.

Suppose |A| < |B|. Then |A + B| = |B| if and only if there is a subgroup H of G, such that A is contained
in a coset of H, and B is a union of cosets of H.

Proof: Suppose |A + B| = |B|. We may assume 0 € A (by subtracting some fixed element ag € A from all
elements of A). Then B C A+ B, and so B= A+ B. Thus a + B = B for each a € A.

Let H={h € G| h+ B = B}. Note that H is a group! Then we just saw that A C H. We need to show
that for all b € B and h € H, b+ h € B. But this follows from the definition of H.



3 The Cauchy-Davenport Theorem

Now let p be prime and let A, B C Z,,. There are no nontrivial subgroups in Z,, so |A+ B| = max{|A|, |B|}
cannot happen except in trivial cases.

The Cauchy-Davenport theorem shows that in fact |A + B| is as large as in the case of the real numbers,
except for the obvious constraint that it cannot be larger than p.

Theorem 1.
A+ B| > min{ A + |B| - 1,p}.

Proof. By induction on |B|. If |B| = 0 or 1 then the claim is obvious. If |A| = p the claim is obvious.

Now let |B| > 1. By the previous result, we know that |A + B| > |A| (this is the only place where we
use the fact that p is prime!). Since A+ B € A, there is an element ay € A such that ap + B € A. Let
By={be B|ay+b¢gA}. We have |By| > 1.

Define A’ = AU (ag + By), and B’ = B\ By. By definition, ag + BoN A =0, so |A’| = |A| + | Bo|. Further,
\B| = |B| — | Byl.

Finally, note that A’ 4+ B’ C A+ B. Clearly we only need to show that (ag + Bo) + (B \ By) C A+ B. Take
any element by € By and b € B\ By. We want to show that ag + by +b € A+ B. Since b € B\ By, there is
some element a € A such that ag +b=a. Then ag+ by +b=(ap+b) +by=a+byg € A+ B.

The induction hypothesis applied to A’, B’ completes the proof. O

4 Proof via Combinatorial Nullstellensatz

We now see another proof, this time using polynomials(!), due to Alon-Nathanson-Ruzsa.
The following basic fact will underlie the approach.

Theorem 2 (Combinatorial Nullstellensatz). Let F be a field. Let Sy,...,Sm CF be sets of size k1, ..., k.
Suppose P(X1,...,X,,) € F[Xy,..., X,n] be nonzero polynomial such that for each i, the degree in X; of P
at most k; — 1.

Then there exists (a1,...,am) € [1, Si such that P(ai,...,am) # 0.

The m =1 case is simply the statement that polynomial of degree d has at most d roots. The general case
can be proved by induction on m (exercise!). The key is to write

kpm—1
P(Xy,..., X)) = Z Pi(X1,. .., Xm_1) X7,
=0

Since P is nonzero, some P; is nonzero.
Now we prove the Cauchy-Davenport theorem. Take sets A,B C F,. Let |[A| =r, |B| =s, |[A+ B| =t.
Suppose the Cauchy-Davenport theorem didn’t hold in this case, i.e., t <r+s—2and t < p— 1. Consider
the polynomial

QX Y)= ] x+Y-o.

ceA+B

Observe that ) vanishes on every point (a,b) € A x B.

We cannot apply the Combinatorial Nullstellensatz directly, since @ has individual degree ¢ in each variable.
However, we can apply some transformations to Q. Let P4(X) = [[,c4(X —a). Let Pp(Y) = [[,c (Y —0).
Then Pa(a) and Pp(b) also vanish on all points (a,b) € A x B. Thus if we reduce Q(X,Y) mod P4(X)
and Pg(Y) (namely, whenever we see X" in Q(X,Y’), we replace it with the polynomial X" — P4(X), and
whenever we see Y, we replace it with Y — Pg(Y)), the resulting polynomial Q(X,Y") will also vanish on
all points in A x B. Further, this polynomial will have degree at most 7 —1 and s — 1 in X and Y. Thus we
may apply the Combinatorial Nullstellensatz to Q.



This means that Q(X,Y), which we know is of the form Q(X,Y) — u(X,Y)Pa(X) — v(X,Y)Pg(Y), is the
zero polynomial.

We will now get a contradiction. Consider the coefficient of the monomial M = X"~ 'Y*= (=1 in Q(X,Y).
It equals (rfl), which is nonzero mod p since t < p—1 (this is the place where we use that p is prime!). Since
t <r+4s—2, we have that t — (r — 1) < s — 1. Thus M has individual degrees at most r — 1 and s — 1, and
appears in () with a nonzero coefficient. Furthermore, by looking at degrees, we see that M cannot appear
in u(X,Y)Pa(X) +v(X,Y)Pp(Y) with a nonzero coefficient. Thus M must appear in @ with a nonzero

coefficient, which contradicts the fact that Q is the zero polynomial.

5 The Erdos-Heilbronn Conjecture

We now study a different situation, the case of distinct sums.
For a set A, we define A+A by:
A+A={a+ad |a,a € Aja#d'}.

How small can A+A be? In the real numbers, if A is an arithmetic progression, we have |A+A| = 2|A| — 3.
In fact, we have the bound |A+A| > 2|A| — 3 for all sets A C R.
Next class we will see a polynomial-based proof that this inequality holds even in IFp.



