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1 Introduction and class logistics

• See

http://www.math.rutgers.edu/~sk1233/courses/additive-F16/

for the course website (including syllabus).

• Class this Thursday is cancelled. We will schedule a makeup class sometime.

• Office hours: Thursdays at 11am.

• References: Tao and Vu, Additive combinatorics, and other online references (including class notes).

• Grading: there will be 2 or 3 problem sets.

2 How small can a sumset be?

Let A,B be subsets of an abelian group (G,+). The sumset of A and B, denoted A + B is given by:

A + B = {a + b | a ∈ A, b ∈ B}.

We will be very interested in how the size of A + B relates to the sizes of A and B (for A,B finite).
Some general comments. If A and B are generic, then we expect |A + B| to be big. Only when A and B
are very additively structured, and furthermore if their structure is highly compatible, does |A + B| end up
small.
If G is the group of real numbers under addition, then the following simple inequality holds:

|A + B| ≥ |A|+ |B| − 1.

Proof: Let A = {a1, . . . , ak} where a1 < a2 < . . . < ak. Let B = {b1, . . . , b`}, where b1 < . . . < b`. Then
a1 + b1 < a1 + b2 < . . . < a1 + b` < a2 + b` < a3 + b` < . . . < ak + b`, and thus all these elements of A+B are
distinct. Thus we found |A|+ |B| − 1 distinct elements in A + B. Equality is attained if and only if A and
B are arithmetic progressions with the same common difference (In case of equality we need to have either
ai + bj = a1 + bj+i−1 or ai + bj = ai+j−` + b`).
Now let us move to a general group. Then at the very least we have |A + B| ≥ max{|A|, |B|}.
Equality can hold, for example if A = B is a subgroup of G. In fact, every equality case is closely related to
this.
Suppose |A| ≤ |B|. Then |A + B| = |B| if and only if there is a subgroup H of G, such that A is contained
in a coset of H, and B is a union of cosets of H.
Proof: Suppose |A + B| = |B|. We may assume 0 ∈ A (by subtracting some fixed element a0 ∈ A from all
elements of A). Then B ⊆ A + B, and so B = A + B. Thus a + B = B for each a ∈ A.
Let H = {h ∈ G | h + B = B}. Note that H is a group! Then we just saw that A ⊆ H. We need to show
that for all b ∈ B and h ∈ H, b + h ∈ B. But this follows from the definition of H.
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3 The Cauchy-Davenport Theorem

Now let p be prime and let A,B ⊆ Zp. There are no nontrivial subgroups in Zp, so |A+B| = max{|A|, |B|}
cannot happen except in trivial cases.
The Cauchy-Davenport theorem shows that in fact |A + B| is as large as in the case of the real numbers,
except for the obvious constraint that it cannot be larger than p.

Theorem 1.
|A + B| ≥ min{|A|+ |B| − 1, p}.

Proof. By induction on |B|. If |B| = 0 or 1 then the claim is obvious. If |A| = p the claim is obvious.
Now let |B| > 1. By the previous result, we know that |A + B| > |A| (this is the only place where we
use the fact that p is prime!). Since A + B 6⊆ A, there is an element a0 ∈ A such that a0 + B 6⊆ A. Let
B0 = {b ∈ B | a0 + b 6∈ A}. We have |B0| ≥ 1.
Define A′ = A ∪ (a0 + B0), and B′ = B \B0. By definition, a0 + B0 ∩A = ∅, so |A′| = |A|+ |B0|. Further,
|B′| = |B| − |B0|.
Finally, note that A′ +B′ ⊆ A+B. Clearly we only need to show that (a0 +B0) + (B \B0) ⊆ A+B. Take
any element b0 ∈ B0 and b ∈ B \B0. We want to show that a0 + b0 + b ∈ A + B. Since b ∈ B \B0, there is
some element a ∈ A such that a0 + b = a. Then a0 + b0 + b = (a0 + b) + b0 = a + b0 ∈ A + B.
The induction hypothesis applied to A′, B′ completes the proof.

4 Proof via Combinatorial Nullstellensatz

We now see another proof, this time using polynomials(!), due to Alon-Nathanson-Ruzsa.
The following basic fact will underlie the approach.

Theorem 2 (Combinatorial Nullstellensatz). Let F be a field. Let S1, . . . , Sm ⊆ F be sets of size k1, . . . , km.
Suppose P (X1, . . . , Xm) ∈ F[X1, . . . , Xm] be nonzero polynomial such that for each i, the degree in Xi of P
at most ki − 1.
Then there exists (a1, . . . , am) ∈

∏
i Si such that P (a1, . . . , am) 6= 0.

The m = 1 case is simply the statement that polynomial of degree d has at most d roots. The general case
can be proved by induction on m (exercise!). The key is to write

P (X1, . . . , Xm) =

km−1∑
j=0

Pj(X1, . . . , Xm−1)Xj
m.

Since P is nonzero, some Pj is nonzero.
Now we prove the Cauchy-Davenport theorem. Take sets A,B ⊆ Fp. Let |A| = r, |B| = s, |A + B| = t.
Suppose the Cauchy-Davenport theorem didn’t hold in this case, i.e., t ≤ r + s− 2 and t ≤ p− 1. Consider
the polynomial

Q(X,Y ) =
∏

c∈A+B

(X + Y − c).

Observe that Q vanishes on every point (a, b) ∈ A×B.
We cannot apply the Combinatorial Nullstellensatz directly, since Q has individual degree t in each variable.
However, we can apply some transformations to Q. Let PA(X) =

∏
a∈A(X−a). Let PB(Y ) =

∏
b∈B(Y − b).

Then PA(a) and PB(b) also vanish on all points (a, b) ∈ A × B. Thus if we reduce Q(X,Y ) mod PA(X)
and PB(Y ) (namely, whenever we see Xr in Q(X,Y ), we replace it with the polynomial Xr − PA(X), and
whenever we see Y s, we replace it with Y s − PB(Y )), the resulting polynomial Q̂(X,Y ) will also vanish on
all points in A×B. Further, this polynomial will have degree at most r− 1 and s− 1 in X and Y . Thus we
may apply the Combinatorial Nullstellensatz to Q̂.
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This means that Q̂(X,Y ), which we know is of the form Q(X,Y )− u(X,Y )PA(X)− v(X,Y )PB(Y ), is the
zero polynomial.
We will now get a contradiction. Consider the coefficient of the monomial M = Xr−1Y t−(r−1) in Q(X,Y ).
It equals

(
t

r−1
)
, which is nonzero mod p since t ≤ p−1 (this is the place where we use that p is prime!). Since

t ≤ r + s− 2, we have that t− (r− 1) ≤ s− 1. Thus M has individual degrees at most r− 1 and s− 1, and
appears in Q with a nonzero coefficient. Furthermore, by looking at degrees, we see that M cannot appear
in u(X,Y )PA(X) + v(X,Y )PB(Y ) with a nonzero coefficient. Thus M must appear in Q̂ with a nonzero
coefficient, which contradicts the fact that Q̂ is the zero polynomial.

5 The Erdos-Heilbronn Conjecture

We now study a different situation, the case of distinct sums.
For a set A, we define A+̂A by:

A+̂A = {a + a′ | a, a′ ∈ A, a 6= a′}.

How small can A+̂A be? In the real numbers, if A is an arithmetic progression, we have |A+̂A| = 2|A| − 3.
In fact, we have the bound |A+̂A| ≥ 2|A| − 3 for all sets A ⊆ R.
Next class we will see a polynomial-based proof that this inequality holds even in Fp.
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