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Roughly, factoring bivariate polynomials is like factoring univariate polynomials over Q.

Given a field F, F [T,X] ⊆ F (T )[X] ≈ Q[x]

1 General Idea

1) Find an approximate root g of F (T,X), that is, X = g(T ). This will be a power series in T
that, if allowed to be an infinite power series, we can hope for a true root. Instead, we will just
truncate it to find an approximate root.

2) Find a minimal polynomial, G(T,X) of g(T ) found in previous step.

2 Algorithm

Given a polynomial F ∈ F [T,X] to be factored,

1) Make F (T,X) monic in X by doing a linear change of variables.

2) Make F (T,X) squarefree in F(T )[X] by using the derivative trick.

3) Find t0 ∈ F such that F (t0, X) is a squarefree univariate polynomial in F[X]. We know that
such a t0 exists by the discriminant argument, and how to find it follows from the proof done
last class. Try 2d2 different choices of t ∈ F. If the size of F is too small, extend the base field
to one that has size at least 2d2, where d is the total degree of F (T,X). Being able to factor
over this extension gets us factoring over F.

3.5) Shift the origin of T so that t0 = 0.

4) For some extension K of F, find a root α ∈ K of F (0, X). As an example, suppose that
F (0, X) = (X2 − 2)(x3 − 7). Then, we could extend F to K = F[y]/〈y2 − 2〉. Then F (0, X) has
a root in K, namely y, and we can continue working in K from here on.

5) Find α0 +α1T +α2T
2 + · · ·+αk−1T

k−1 = gk(T ) such that F (T, gk(T )) ≡ 0 mod T k. Note that
this is where we use the squarefreeness of F (T, gk(T )).

6) Find G(T,X) such that degX(G(T,X)) < degX(F (T,X)), degT (G(T,X)) ≤ degT (F (T,X)),
and G(T, gk(T )) ≡ 0 mod T k. We can find this because it can be written as a system of linear
equations because G(T,X) = ΣaijT

iXj and then we just need solve for aij . This process is like
finding the minimal polynomial of an approximate root that we saw in earlier lectures. If there
exists such a G, the G of minimal X-degree is a factor of F . Note that we will end up taking k
to be approximately 2d2.
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3 Analysis

3.1 Making F (T,X) monic in X

Suppose that the total degree of F (T,X) is d. We want to find a, b, c, e such that

F (aT + bX, cT + eX) = Q(a, b, c, e)Xd +H(T,X)

Where Q is some nonzero polynomial, and degX(H) < d. Note that only b and e will be affecting Q
since any of the terms containing an a or a c will also contain T , and therefore not be full X-degree.
We then write F = Fd + F<d, separating out the terms that have total degree d from those which
have smaller total degree. Then, we just try letting a = c = 0, we have

Fd(bX, eX) = Fd(b, e)X
d

We know that Fd(b, e) is a nonzero polynomial because there had to of been terms in F that attained
total degree d. So, there is some choice of b and e that makes Fd(b, e) 6= 0. So, Q(b, e) = Fd(b, e) 6= 0.
Scaling the entire polynomial by Q(b, e)−1 completes this step

3.2 Make F (T,X) squarefree

There is not much to say for this step, as we’ve seen many similar things before. If δF
δx (T,X) = 0,

then use the trick as in the univariate factoring case. Otherwise, take GCD(F (T,X), δFδx (T,X)) ∈
F(T )[X]. If it is degree 0 in X, then F is squarefree, otherwise, we just found a factor of F and
are done.

3.3 Finding t0 to make F (t0, X) squarefree

Not much will be said on step 3, as we covered how to do it last class. How step 3.5 works is
obvious.

3.4 Finding a root of F (0, X)

We know from step 1 that F (0, X) is a non-zero degree d polynomial (that is squarefree from step
2). Since this is a univariate polynomial, we can factor it as

F (0, X) =
∏

Fi(X)

where each Fi is irreducible.

Then, take any Fi(X) and consider the field K = F[Y ]/〈Fi(Y )〉. Now, we know that F (0, X) has
α = Y as a root over K. We then consider K to be the field we are working over from here on. By
squarefreeness, we know that δF

δx (0, α) 6= 0. This completes step 4.
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3.5 Finding gk(T )

We will be proceeding in a manner similar to the way that the Implicit Function Theorem. First
note that F (0, α) = 0 is equivalent to F (T, α) ≡ 0( mod T ). So, we can let α0 be the root found
in the previous step. We will procede by induction, as an example first step, we want to find an α1

such that
F (T, α0 + α1T ) ≡ 0( mod T 2)

. We exapnd using Taylor’s theorem for polynomials to get

F (T, α0) +
δF

δx
(T, α0)α1T +

1

2!

δ2F

δx2
(T, α0)(α1T )2 + · · ·

We might be concerned that 1
2! does not make sense in our field, as it may have characteristic 2.

To get around this issue, we briefly introduce the Hasse derivative:

Suppose we have H(x) ∈ F[x], then, we can think of expanding H(x + z) and grouping together

all the terms that have zi in them for each i. The coefficient of zi is defined to be the ith Hasse
derivative.

The ith Hasse derivative can take the place of 1
i!
δiF
δxi
F (T, α0) when applying Taylor’s Theorem.

Turning our attention back to infinite polynomial obtained by Taylor’s Theorem, all but the first
two terms are ≡ 0( mod T 2), and so, we may drop them, and we are left with

F (T, α0) +
δF

δx
(T, α0)α1T ≡ 0( mod T 2)

Trouble can happen when trying to solve this if δF
δx (T, α0) is divisible by T . However, if it was

divisible by T , then we wouldn’t have δF
δx (0, α0) = 0 as we found in the previous step by square-

freeness of F (0, X). Note also that T divides F (T, α0) because, as a polynomial in T , it must have
a root at 0 by the way we selected α0.

We write

F (T, α0) = βT + δ1(T )T 2

δF

δx
(T, α0) = γ + Tδ(T )

For some non-zero γ, and some polynomials δ1, δ2. Then, rewriting our expression, and eliminating
all terms that are multiples of T 2, we get

βT + γα1T ≡ 0( mod T 2)

It is then trivial to solve for α1 = −β
γ

Now, suppose that we have g` = α0 + α1T + · · ·+ α`−1T
`−1 such that F (T, g`(T )) ≡ 0( mod T `).

We will look for an α` such that

F (T, g`(T ) + α`T
`) ≡ 0( mod T `+1)
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We will just apply Taylor’s Theorem again, to get that this is

F (T, g`(T )) +
δF

δx
(T, g`(T ))α`T

` + T 2`poly(T ) ≡ 0( mod T `+1)

reducing modulo T `+1, and remembering what we know about g`, we have that this expression is

β`T
` + (γ` + Tpoly(T ))α`T

` ≡ β`T ` + γ`α`T
` ≡ 0( mod T `+1

Note that we have γ` 6= 0 because we may write δF
δx (T,X) = δF

δx (0, α0) + Tpoly(T ). So, again, we

get that α` = −β`
γ`

. This completes step 5.

As an aside, tricks of this type can be used to modify the algorithm to be done very quickly in
parallel.

3.6 Finding Minimal Polynomial

We now are looking for a G(T,X) 6= 0 such that G(T, gk(T )) = 0( mod T k), degX(G) < d, and
degT (G) ≤ d.

We make the following claims:

1 If F has a nontrivial factor, then we will find a nonzero G.

2 If we find a nontrivial, non-zero G, then we can find a nontrivial factor of F .

We start with the proof of claim 1 . Suppose that F = F1F2, then, we know:

F1(T, gk(T ))F2(T,Gk(T )) ≡ 0( mod T k)

We want that one of these two factors is zero, then we can let that one be our G. The crux of
showing this is that if one of them has a non-zero constant term, the other must be zero. If we
have neither with a non-zero constant term, then both are divisible by T , then F is divisible by
T 2, contradicting the fact that F was made to be squarefree.

Motivating Note: Suppose we have f(x) ∈ Z[x], α ∈ R, g(x) ∈ Z[x] with all coefficients ≤ 100 and
degree 5. If |f(α)| < 2−100, and |g(α)| < 2−100, then f and g have a common factor.

The remainder of the analysis will be left until next lecture.
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