Conceptual Problems Multivariable Calculus

Please submit your solutions to the highlighted problems.

1 Vectors and Geometry

1. Two lines on the $x y$ plane either intersect at a point or are parallel. a) When you have two lines in 3d space (so $x y z$ space), what are the possibilities? b) What about two planes in 3d space? c) What about three planes in 3d space? d) Or four planes in 3d space? e) What about a line and a plane in 3d space?
2. Two lines on the $x y$ plane determine a unique line passing through these points. a) Is this still true in 3d space? b) How many points do you need to specify a plane in 3d space?
3. Suppose \mathbf{v} is a vector with certain physical units. For example, if \mathbf{v} were a velocity vector then its units would be length/time. How are the units of $|\mathbf{v}|$ related to the units of \mathbf{v} ? What are the units of $\frac{\mathbf{v}}{|\mathbf{v}|}$?
4. What is the line of intersection between the $x z$ and $y z$ planes?
5. What does the equation $x=3$ correspond to if a) x is the only variable being considered, b) x, y are the only variables being considered, c) x, y, z are the only variables being considered.
6. What does the equation $x^{2}+y^{2}=4$ correspond to if a) x, y are the only variables being considered, b$) x, y, z$ are the only variables being considered.
7. Suppose \mathbf{v} is a vector on the $x y$ plane different from $\mathbf{0}$. Then $\mathbf{v}=|\mathbf{v}| \frac{\mathbf{v}}{|\mathbf{v}|}$ is known as the polar decomposition of the vector. Can you think of a reason why this name is given to the previous equation? Hint: think of complex numbers.
8. Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}$ are two vectors and \mathbf{u} another vector such that $\operatorname{proj}_{\mathbf{u}} \mathbf{v}_{1}=3 \mathbf{i}-5 \mathbf{k}$ and $\operatorname{proj}_{\mathbf{u}} \mathbf{v}_{2}=2 \mathbf{j}+7 \mathbf{k}$. Find a) $\operatorname{proj}_{\mathbf{u}}\left(\mathbf{v}_{1}+2 \mathbf{v}_{2}\right)$, b) $\operatorname{proj}_{\mathbf{u}} 3 \mathbf{v}_{1}$ and c) $\operatorname{proj}_{3 \mathbf{u}} \mathbf{v}_{2}$.
9. Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are three different vectors. Does the expression $\mathbf{v}_{1} \cdot \mathbf{v}_{2} \cdot \mathbf{v}_{3}$ make sense? What about $\mathbf{v}_{1} \times \mathbf{v}_{2} \times \mathbf{v}_{3}$? What about $\mathbf{v}_{1} \cdot\left(\mathbf{v}_{2} \times \mathbf{v}_{3}\right)$? Is the last expression the same as $\mathbf{v}_{1} \times\left(\mathbf{v}_{2} \cdot \mathbf{v}_{3}\right)$, or the same as $\left(\mathbf{v}_{1} \cdot \mathbf{v}_{2}\right) \times \mathbf{v}_{3}$?
10. If $\mathbf{u} \times \mathbf{v}=\mathbf{u} \times \mathbf{w}$ and $\mathbf{u} \neq \mathbf{0}$, then does $\mathbf{v}=\mathbf{w}$?
11. T/F If \mathbf{a}, \mathbf{b} are two arbitrary vectors then $\|\mathbf{a} \times \mathbf{b}\|=\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta$
12. T / F If \mathbf{a}, \mathbf{b} are two arbitrary vectors then $\mathbf{a} \times \mathbf{b}=\mathbf{b} \times \mathbf{a}$.
13. T/F If \mathbf{a} and \mathbf{b} are unit vectors, then so is $\mathbf{a} \times \mathbf{b}$.
14. T / F If \mathbf{a}, \mathbf{b} are two arbitrary vectors then $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a}=0$.
15. T/F If \mathbf{a}, \mathbf{b} are two arbitrary vectors then $\|\mathbf{a}+\mathbf{b}\|=\|\mathbf{a}\|+\|\mathbf{b}\|$.
16. T/F If \mathbf{a}, \mathbf{b} are two arbitrary vectors then $\|\mathbf{a} \times \mathbf{b}\|=\|\mathbf{b} \times \mathbf{a}\|$.

2 Curves

1. What curve do you get by intersecting the sphere $x^{2}+y^{2}+z^{2}=4$ with the plane $x=y$?
2. Suppose a particle is moving with position vector $\mathbf{r}(t)$ and velocity vector $\mathbf{v}(t)$, and acceleration $\mathbf{a}(t)$. a) if $\mathbf{v}(t)$ is constant, must $|\mathbf{v}(t)|$ be constant? b) if $|\mathbf{v}(t)|$ is constant, must $\mathbf{v}(t)$ be constant? c) if $\mathbf{v}(t)$ and $\mathbf{r}(t)$ are orthogonal vectors, must $\mathbf{a}(t)$ and $\mathbf{v}(t)$ be orthogonal?
3. Find the intersection between the sphere $3 x^{2}+y^{2}+z^{2}=4$ and the cylinder $y^{2}+z^{2}=1$.
4. T/F Suppose that a GPS satellite is orbiting the Earth in such a way that its distance from the planet remains constant. Then the velocity vector of the satellite is always perpendicular to its position vector.
5. Suppose that $\mathbf{r}_{1}(t)$ and $\mathbf{r}_{2}(t)$ are two curves which intersect at a point P. If $P=\mathbf{r}_{1}\left(t_{1}\right)$ and $P=\mathbf{r}_{2}\left(t_{2}\right)$, does this mean that $t_{1}=t_{2}$?
6. Suppose that $\mathbf{r}_{1}(t)$ is the equation of a curve and one defines $\mathbf{r}_{2}(t)=\mathbf{r}_{1}(\lambda t)$ for λ a positive constant (basically \mathbf{r}_{2} is using a different time scale than the one used for \mathbf{r}_{1}). How is the velocity vector of \mathbf{r}_{2} related to the one of \mathbf{r}_{1} ? What about the acceleration vectors? If one defines $\mathbf{r}_{3}(t)=\mathbf{r}_{1}\left(t-t_{0}\right)$, how is the velocity vector of \mathbf{r}_{3} related to the one of \mathbf{r}_{1} ? What about the acceleration vectors?
7. Suppose $\mathbf{r}(t)=R \cos (\omega t) \mathbf{i}+R \sin (\omega t) \mathbf{j}$ gives the equation of a circle. What are the units of ω if t is given in units of seconds, or more generally, time? What values t must take if we want $\mathbf{r}(t)$ to give a parametrization of the circle? The period of $\mathbf{r}(t)$ is the smallest positive number T such that $\mathbf{r}(t+T)=\mathbf{r}(t)$. What is T in this situation?
8. Is the velocity vector $\mathbf{v}(t)$ of a curve $\mathbf{r}(t)$ always perpendicular to the acceleration vector $\mathbf{a}(t)$?

3 Functions of Several Variables

1. Suppose that the level curves of a function $z=f(x, y)$ consists of straight lines. Must the graph of f be a plane?
2. Suppose that $T(x, y, z)$ represents the temperature at the point (x, y, z), measured in Kelvin. What are the units of $\frac{\partial T}{\partial x}$? What about the units of $\frac{\partial^{2} T}{\partial x^{2}}$?
3. Suppose $f(x, y)$ is a function defined on the $x y$ plane. Is it possible for $f(x, y)$ to have only local maxima but no local minima? What about the converse: can a function have only local minima but no local maxima? If a function has a critical point which is a saddle point, must it have critical points which are either local maxima or local minima?
4. If (a, b) is a critical point of f (in the sense that $f_{x}(a, b)=f_{y}(a, b)=0$), is it true that (a, b) is a critical point of f^{2} ? How about the converse? Namely, if (a, b) is a critical point of f^{2}, does that mean that (a, b) is a critical point of f ?
5. True/False: if $\nabla f(a, b)=(0,0), f_{x x}(a, b)>0$ and $f_{y y}(a, b)>0$, then f has a local minimum at (a, b).
6. The Coulomb potential generated by a charge q located at the origin of the $x y$ plane is $V(x, y)=\frac{q}{4 \pi \epsilon_{0}} \frac{1}{\sqrt{x^{2}+y^{2}}}$, where ϵ_{0} is a constant. a) What is the domain of V ? b) What is the domain of V if it is considered as a function of x, y, z, namely, $V(x, y, z)=\frac{q}{4 \pi \epsilon_{0}} \frac{1}{\sqrt{x^{2}+y^{2}}}$?
7. Suppose $T(x, y)$ represents the temperature of the floor at the point (x, y). If we use polar coordinates $x=r \cos \theta, y=r \sin \theta$, we can think of T as a function of r, θ. Find $\frac{\partial T}{\partial r}$ and $\frac{\partial T}{\partial \theta}$ in terms of $\frac{\partial T}{\partial x}$ and $\frac{\partial T}{\partial y}$. We say that the temperature is isotropic if $\frac{\partial T}{\partial \theta}=0$. Is the function $T(x, y)=\frac{y}{x}$ isotropic? What about $T(x, y)=x^{2}+y^{2}$?
8. Suppose the domain of $f(x, y)$ consists of the rectangle $-1 \leq x \leq 1,0 \leq y \leq 1$, while the domain of $g(x, y)$ consists of the rectangle $0 \leq x \leq 1,-1 \leq y \leq 1$. What is the domain of $h(x, y)=f(x, y) g(x, y)$?
9. Suppose two level surfaces $f_{1}(x, y, z)=c_{1}$ and $f_{2}(x, y, z)=c_{2}$ intersect on a curve. What is an easy way to find the tangent vector \mathbf{v} to any point on this curve from ∇f_{1} and ∇f_{2} ?
10. T/F The function $f(x, y)=\left(1-x^{2}-y^{2}\right)^{1 / 2} \ln \left(x^{2}+y^{2}-1\right)$ has empty domain.
11. True/ False: If $\nabla f(x, y)=(0,0)$, then (x, y) is a local minimum or local maximum of f
12. True/False: For any unit vector $\mathbf{u}, D f_{-\mathbf{u}}(\mathbf{r})=-D f_{\mathbf{u}}(\mathbf{r})$
13. True/False: if $f(x, y)=\ln y$, then $\nabla f(x, y)=1 / y$
14. True/False: if f is differentiable at (a, b) and $\nabla f(a, b)=(0,0)$, then f has a local maximum or minimum at (a, b)
15. True/False: if $f(x, y)$ has two local maxima then f must have a local minimum

4 Double and Triple Integrals

1. Suppose $f(x, y)$ and $g(x, y)$ are continuous functions on the unit square $0 \leq x \leq 1$, $0 \leq y \leq 1$. Is it true that $\int_{0}^{1} \int_{0}^{1} f(x, y) g(x, y) d y d x=\left(\int_{0}^{1} \int_{0}^{1} f(x, y) d y d x\right)\left(\int_{0}^{1} \int_{0}^{1} g(x, y) d y d x\right)$
2. Suppose $\rho(x, y)$ has units of electric charge per unit area. What are the units of $\iint_{R} \rho(x, y) d A$? More generally, how are the units of $\iint_{R} f(x, y) d A$ related to those of $f(x, y)$?
3. If $\iint_{R} f(x, y) d A \geq 0$, does that mean that $f(x, y) \geq 0$ at every point of the region of integration R ?
4. True/False: the integral $\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{1} \rho^{2} \sin \theta d \rho d \theta d \phi$ gives the volume of $1 / 4$ of a sphere
5. True/False: For any $a, b \in \mathbb{R}$ and a continuous function $f, \int_{0}^{a} \int_{0}^{b} f(x, y) d y d x=$ $\int_{0}^{b} \int_{0}^{a} f(x, y) d x d y$
6. True/False: If $f(x, y)=g(x) h(y)$ then $\iint_{D} f(x, y) d A=\left(\iint_{D} g(x) d A\right)\left(\iint_{D} h(y) d A\right)$
7. True/False: $\int_{0}^{1} \int_{0}^{x} \sqrt{x+y^{2}} d y d x=\int_{0}^{x} \int_{0}^{1} \sqrt{x+y^{2}} d x d y$

5 Vector Fields

1. True/False: $\nabla \cdot(\nabla \times \mathbf{F})=0$
2. True/False: If \mathbf{F}, \mathbf{G} are vector fields and $\nabla \times \mathbf{F}=\nabla \times \mathbf{G}$, then $\mathbf{F}=\mathbf{G}$.
3. True/False: If \mathbf{F} is conservative then $\nabla \cdot \mathbf{F}=0$
4. True/False: $\operatorname{curl}(\operatorname{div} \mathbf{F}))$ is not a meaningful expression
