Math 251:F2, M-Th, 1pm-2:55pm

          Syllabus and General Information,  Summer  2023

 


Lecture Date Topic(s) and text sections
1 6/26 12.1 3D coordinate systems
12.2 Vectors in 2D and 3D
2 6/27 12.3 Dot Product and the Angle Between Two Vectors
12.4 The Cross Product
3 6/28 12.5 Planes in Three-Space
12.6 Cylinders and Quadric Surfaces
4 6/29 13.1 Curves in Space and Their Tangents
13.2 Calculus of Vector-Valued Functions
5 7/03 13.3 Arc Length and Speed
6 7/05 14.1 Functions of Two or More Variables
14.2 Limits and Continuity in Several Variables 
7 7/06 14.3 Partial Derivatives 
14.4 The Chain Rule
8 7/10 14.5 The Gradient and Directional Derivatives
9 7/11  14.6 Tangent Planes and Differentials
10 7/12  14.7 Optimization in Several Variables
11 7/13 14.8 Lagrange Multipliers Review for Exam 1
12 7/17 Exam 1   15.1 Double Integrals
13 7/18 15.1 Double Integrals
14 7/19 15.2 Double Integrals over  General Regions
15 7/20 15.3 Area by Double Integration
16 7/24 15.4 Integration in Polar Coordinates 
17 7/25   15.5 Triple Integrals in Rectangular Coordinates
18 7/26 15.7 Triple Integrals in Cylindrical and Spherical Coordinates
19 7/27 15.8 Change of Variables in Multiple Integrals
20 7/31 16.1 Line Integrals of Scalar Functions 16.2 Vector Fields & Line Integrals: Work, Circulation, Flux
21 8/01 16.3 Conservative Vector Fields, Path Independence
22 8/02 16.4 Green's Theorem in the Plane  Review for Exam 2
23 8/03 Exam 2  16.5 Surface and Area 
24 8/07 16.5 Surface and Area 
25 8/08  16.6 Surface Integrals
26 8/09 16.6 Surface Integrals
27 8/10 16.7 Stokes' Theorem
28 8/14 16.8 The Divergence Theorem
29 8/15 Review for the Final  Exam
30 8/16 Final exam