Math 250 - Syllabus and General Information, Fall 2022


Lecture   Date                                        Section Covered
1  09/06 1.1, 1.2 Matrices and Vectors
2  09/09 1.3 Systems of Linear Equations
3  09/13 1.4 Gaussian Elimination
4  09/16 1.6 Span of a Set of Vectors
5  09/20 1.7 Linear Dependence and Linear Independence
6   09/23 1.7, 2.1 Homogeneous Systems, Matrix Multiplication
7   09/27 2.1 Matrix Algebra; Quiz 1
8   09/30 2.3, Appendix E  Invertibility and Elementary Matrices, Uniqueness of RREF
9   10/04 2.4  Inverse of a Matrix
10   10/07 2.6  LU Decomposition of a Matrix; Review for the exam
11   10/11 Midterm Exam 1
12   10/14 3.1 Determinants; Cofactor Expansions
13  10/18 3.2 Properties of Determinants
14   10/21 4.1 Subspaces
15   10/25 4.2 Basis and Dimension
16    10/28 4.3 Column Space and Null Space of a Matrix
17   11/01 5.1 Eigenvalues and Eigenvectors; Quiz 2
18    11/04  5.2 Characteristic Polynomial
19    11/08 5.3 Diagonalization of a Matrix
20    11/11 5.5 Applications of Eigenvalues; Review for the exam
21    11/15 Midterm Exam 2
22     11/18   6.1 Geometry of Vectors; Projection onto a Line
23   11/23 6.2 Orthogonal Sets of Vectors; Gram - Schmidt Process; QR factorization
24    11/29 6.3 Orthogonal Projection; Othogonal Complements
25    12/02 6.4 , 6.5 Least Squares,  Normal Equations, Orthogonal Matrices
26    12/06 6.6 Diagonalization of Symmetric Matrices Quiz 3
27   12/09 6.6 Spectral Decomposition for Symmetric Matrices, Diagonalization of Quadratic Forms
28   12/13 Review for the Final Exam