Workshop 1, Math 152

1. Sketch the first quadrant region bounded by the parabola $y=x^{2}$, the tangent to the parabola at $(1,1)$, and the x-axis, and calculate the area of this region.
2. Sketch the graph of $y_{1}=\sin x$ and $y_{2}=\cos x$ in the viewing window $[0,2 \pi] \times[-1,1]$.

In this domain, find the area of the largest region that is bounded above by $y_{1}=\sin x$ and below by $y_{2}=\cos x$.
3. If f is a continuous function, verify, using substitution, that $2 \int_{0}^{1} f(2 x+1) d x=\int_{1}^{3} f(t) d t$.
4. Suppose that $0<a<b$. Let R be the region bounded by $y=1 / x, y=0, x=a, x=b$.
(a) Find a vertical line $x=c$ that divides R into two subregions of equal area. (Your answer should express c as a function of a and b.)
(b) Use a picture to explain the inequality: $\quad \sqrt{a b} \leq \frac{1}{2}(a+b)$.
5. Sketch the first quadrant regions:
(a) Bounded by $x^{2}+y^{2}=1$ and $x+y=1$
(b) Bounded by $\sqrt{x}+\sqrt{y}=1$ and $x+y=1$.

Which of the two regions has the larger area? Explain your answer .
6. Let $f(x)=x^{3}$.
(a) Find the equation of the tangent line to the graph $y=f(x)=x^{3}$ at the point $(1,1)$.
(b) Find the finite area bounded by $y=x^{3}$ and the tangent line to $y=x^{3}$ at the point $(1,1)$.
7. Calculate the integrals:
(a) $\int \frac{\tan (\sqrt{x})}{\sqrt{x}} d x$
(b) $\int \frac{\cos (\ln x)}{x} d x$
(c) $\int\left(2^{x}\right)^{3}\left(3^{x}\right)^{2} d x$
8. A positive function f has the property that the area bounded by $y=f(x), y=0, x=0, x=u$ is given by the formula $\frac{u^{2}}{u^{2}+1}$ for all $u>0$. What is the function f ?
9. Sketch the region that is bounded above by the parabola $y=1-x^{2}$ and below by the x-axis.
(a) What is the area of this region?
(b) Find a horizontal line that divides the region into two subregions of equal area.

