Workshop 1, Math 152

1. Sketch the first quadrant region bounded by the parabola $y = x^2$, the tangent to the parabola at (1, 1), and the x-axis, and calculate the area of this region.

2. Sketch the graph of $y_1 = \sin x$ and $y_2 = \cos x$ in the viewing window $[0, 2\pi] \times [-1, 1]$.

In this domain, find the area of the largest region that is bounded above by $y_1 = \sin x$ and below by $y_2 = \cos x$.

3. If f is a continuous function, verify, using substitution, that $2\int_0^1 f(2x+1) dx = \int_1^3 f(t) dt.$

4. Suppose that 0 < a < b. Let R be the region bounded by y = 1/x, y = 0, x = a, x = b. (a) Find a vertical line x = c that divides R into two subregions of equal area. (Your answer should express c as a function of a and b.)

(b) Use a picture to explain the inequality: $\sqrt{ab} \leq \frac{1}{2}(a+b)$.

5. Sketch the first quadrant regions:

(a) Bounded by $x^2 + y^2 = 1$ and x + y = 1

(b) Bounded by $\sqrt{x} + \sqrt{y} = 1$ and x + y = 1.

Which of the two regions has the larger area? Explain your answer .

6. Let $f(x) = x^3$.

(a) Find the equation of the tangent line to the graph $y = f(x) = x^3$ at the point (1, 1).

(b) Find the finite area bounded by $y = x^3$ and the tangent line to $y = x^3$ at the point (1, 1).

7. Calculate the integrals:

(a)
$$\int \frac{\tan(\sqrt{x})}{\sqrt{x}} dx$$
 (b) $\int \frac{\cos(\ln x)}{x} dx$ (c) $\int (2^x)^3 (3^x)^2 dx$

8. A positive function f has the property that the area bounded by y = f(x), y = 0, x = 0, x = u is given by the formula $\frac{u^2}{u^2 + 1}$ for all u > 0. What is the function f?

9. Sketch the region that is bounded above by the parabola $y = 1 - x^2$ and below by the x-axis.

(a) What is the area of this region?

(b) Find a horizontal line that divides the region into two subregions of equal area.