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Modular Forms

Eichler -
”There are five elementary arithmetical operations: addition,
subtraction, multiplication, division, and modular forms.”
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Applications

Reciprocity – Modularity, Functoriality

Class Numbers, Complex Multiplication, CFT for Q(
√
−D)

Quadratic Forms, Theta series

Lattices, Elliptic Curves, Modular Curves

Galois representations, congruences

Finite Dimensionality and resulting identities

Hecke Operators, Multiplicativity

Trace Formulae, geodesics, regulators

Periods, L-values

Irrationality of ζ(3)

Borcherd’s products, Monstrous Moonshine, Kac-Moody algebras

Spectral Gap, Ramanujan Graphs

Sphere Packing

Equidistribution of integer points on sphere.

Ruziewiecz’s problem

Elliptic genera — Spin manifolds, Representations of the cobordism ring.
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Modular Forms

Modular forms are functions on the upper half plane H that
transform nicely under the action of a discrete subgroup Γ.

Surya Teja GavvaRutgers University Modular Forms Triangle Groups, Belyi Uniformization, and Modularity Bhaskaracharya Pratishthana, Trimester II, Feb 2022 4 / 53



Definition

A function f : H→ C is called a modular form of weight k for Γ if

1 it is holomorphic

2 Modularity: f |k
(

a b
c d

)
(z) = f

(
az + b

cz + d

)
(cz + d)−k = f (z)

for all

(
a b
c d

)
∈ Γ

3 Holomorphic at Cusps:

(
f |k
(

a b
c d

))
(z) tends to a limit as

z → i∞ for every

(
a b
c d

)
∈ SL2(Z)
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Congruence Subgroups

SL2(R) =

{(
a b
c d

)
: ad − bc = 1, and a, b, c , d ∈ R

}

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(
∗ ∗
0 ∗

)
(modN)

}

Γ1(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 ∗
0 1

)
(modN)

}
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Fourier Expansion

f (z) has a Fourier expansion.

f (z) =
∞∑
n=0

ane
2πinz/µ
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Noncongruence subgroups

There are lot of noncongruence subgroups of SL2(Z) (almost all of
them!)
Consider type-II character subgroup of Γ0(p) of index p. There are
p + 1 of them out of which p are noncongruence.
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Unbounded Denominators

There are 6 index-5 type II( A ) character groups in Γ0(11). Among
them, one is Γ1(11) and the other 5 are noncongruence. Moreover
every one of these noncongruence subgroups satisfies the condition
(UBD).

fP = w−5 + w−4 − 3w−3 + 13w−2 + 20w−1 − 23 + · · · ,

fQ+P = w−5 + w−4 +
23 +

√
5 + i(3 +

√
5)
√
25 + 2

√
5

4
w−3 + · · · ,

fQ+2P = w−5 + w−4 +
99− 33

√
5 + i(23 + 3

√
5)
√
25 + 2

√
5

44
w−3 + · · · ,

fQ+3P = w−5 + w−4 +
99− 33

√
5− i(23 + 3

√
5)
√
25 + 2

√
5

44
w−3 + · · · ,

fQ+4P = w−5 + w−4 +
23 +

√
5− i(3 +

√
5)
√
25 + 2

√
5

4
w−3 + · · · .
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Unbounded Denominators

5
√

fPi
have unbounded deonominators
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Existence of Modular Forms

We have k < 0

ane
−2πny =

∫ 1

0

f (z)e−2πinxdx � y−k/2 → 0 as y → 0

For k = 0, we have bounded holomoprhic function f (z). Hence the
only modular form of weight k ≤ 0 are the constant functions.

(Why) Do they exist for higher levels?

Surya Teja GavvaRutgers University Modular Forms Triangle Groups, Belyi Uniformization, and Modularity Bhaskaracharya Pratishthana, Trimester II, Feb 2022 11 / 53



Eisenstein Series

For an even integer k ≥ 4, the non-normalized weight k Eisenstein
series is the function

Gk(z) =
∗∑

m,n∈Z

1

(mz + n)k

It has the Fourier expansion

Gk(z) = 2ζ(k) + 2 · (2πi)k

(k − 1)!
·
∞∑
n=1

σk−1(n)qn
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Follows from Poisson summation or the using the Fourier formula

π cot(πz) =
1

z
+
∞∑

m=1

(
1

z + m
+

1

z −m

)
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G2

G2(τ) = 2ζ(2)− 8π2
∞∑
n=1

σ(n)qn, q = e2πiτ , σ(n) =
∑
d|n
d>0

d

(G2 | γ) (τ) = G2(τ)− 2πic

cτ + d
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Theta Series

θ(τ) =
∑
t∈Z

e2πit2τ

Poisson summation implies

θ(−1/(4τ)) =
√
−2iτθ(τ)

θ(γ(τ))4 = (cτ + d)2θ(τ)4 for γ = ±
[

1 1
0 1

]
and γ = ±

[
1 0
4 1

]
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Cusp Forms

Subspace where the functions vanish at all the cusps.

f (z) =
∞∑
n=1

ane
2πinz

Weight 12 cusp form of level 1.

∆(z) =
∑
n≥1

τ(n)qn = q
∏
n≥1

(1− qn)24 = η(z)24
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Ramanujan Conjectures

1 τ(mn) = τ(m)τ(n) if gcd(m, n) = 1 (meaning that τ(n) is a
multiplicative function)

2 τ (pr+1) = τ(p)τ (pr )− p11τ (pr−1) for p prime and r > 0.

3 |τ(p)| ≤ 2p11/2 for all primes p.
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Finite Dimensionality

Finite Dimensionality of Mk(Γ) can proved from several type of
arguments: Riemann-Roch, Trace-Formulae (Eichler-Shimura,
Petersson.)

dimMk(Γ0(q), χ) =
k − 1

12
[Γ0(1) : Γ0(q)] + O(

√
qk)
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Ring of Modular Forms of Level 1

M (SL2(Z)) =
⊕
k∈Z

Mk (SL2(Z))

M (SL2(Z)) = C [E4,E6] , S (SL2(Z)) = ∆ · M (SL2(Z))
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Ring of Modular Forms
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Hecke Operators

Different descriptions: Double Cosets, Lattices (sublattices), Hecke
correspondences etc. Explicitly for Mk(Γ0(N), χ)

T (n)f (z) =
1

n

∑
ad=n

χ(a)ak
∑

06b<d

f

(
az + b

d

)
Tn, (n, q) = 1 are commuting normal operators.
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Petersson inner product on Mk(Γ0(q), χ)

(f , g〉 =

∫
H/Γ

f (z)g(z)y kdµ(z).
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Poincare Series

Ek(z) =
∑

γ∈Γ∞\Γ0(N)

χ̄(γ)(cz + d)−k

Pm(z) =
∑

γ∈Γ∞\Γ0(N)

χ̄(γ)(cz + d)−ke(mγz)

Poincare series span Sk(Γ0(N), χ)
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Petersson Trace Formula

h∑
f ∈Hk (q,χ)

λf (n)λf (m)

= δ(m, n) + 2πi−k
∑
c>0

c≡0( mod q)

c−1Sχ(m, n; c)Jk−1

(
4π
√
mn

c

)
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Atkin-Lehner (Newforms/Oldforms)

Can the eigenvalues of Tn for an eigenform f determine f ?
Multiplicity one: True only for the subspace of newforms.
(Orthogonal to oldforms coming from lower levels)

For d | N/M ,

αd : Sk (Γ1(M))→ Sk (Γ1(N)) : f (τ) 7→ f (dτ)

⊕
d |(N/M)

Sk (Γ1(M))→ Sk (Γ1(N))
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Elliptic Curves

E : y 2 = x3 − x

The L-function matches with a Hecke L-function

L(E , s) = L(s, χ) = L(s, f )

where

f (z) =
1

4

∑
α∈Z|i ]

ρ(α)αe
(
z |α|2

)
.

This is the CM case.
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Computations

Mk(Γ1(N)) are computable. That is we want compute arbitrary
Fourier coefficients of a basis of forms given k and N and the
required precision.
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Computations
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Weight 2 Modular Symbols

The group M2 is the free abelian group on symbols {α, β} with

α, β ∈ P1(Q) = Q ∪ {∞}

modulo the relations, (for all α, β, γ ∈ P1(Q), g ∈ Γ)

1 {α, β} = −{β, α} (2-term relation)

2 {α, β} = {α, γ}+ {γ, β} (3-term relation)

3 {gα, gβ} = {α, β} for all g ∈ Γ (Γ-action)

4 {α, gα} ∈ H1 (XΓ;Z)

5 {α, gα} = {β, gβ}

{α, β} is a class of geodesic from α to β.
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Modular Symbols

These symbols generate relative homology H1(XΓ, ∂XΓ,Z)

To get H1(XΓ,Z) we need to consider S2, the part of M2 which lies
in the kernel of the boundary map to the free group on cusps.

{α, β} ∈ M2 → {β} − {α}
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Modular Symbols and Modular Forms

Modular symbols are dual to Modular Forms. We have a pairing

S2(Γ)× H1(XΓ,R) = S2(Γ)× (S2 ⊗ R)→ C

〈f , {α, β}〉 → 2pii

∫ β

α

f (z)dz
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Hecke Operators

The pairing respects Hecke action. For Γ0(N), the operators are
given by

Tp({α, β}) =

(
p 0
0 1

)
{α, β}+

∑
r mod p

(
1 r
0 p

)
{α, β}

We have
〈Tnf , {α, β}〉 = 〈f ,Tn{α, β}〉
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Weight k Modular Symbols

M2 := Q-vector space on symbols {α, β} modulo the 2 term,
3-terms relations. Mk := Q[X ,Y ]k−2 ⊗QM2

(gP)(X ,Y ) := P

(
g−1

[
X
Y

])
g{α, β} := {gα, gβ}

g(P{α, β}) = gP{gα, gβ}

Mk(Γ) :=Mk/(P{α, β} − g(P{α, β}))
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Weight k cuspidal symbols

B2 := Q-vector space on symbols {α} for α ∈ P1(Q)

Bk := Q[X ,Y ]k−2 ⊗Q B2

Bk(Γ) := Bk/(x − gx)

∂(P{α, β}) = P{β} − P{α}
Sk(Γ) := ker(∂)
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Modular Symbols and Modular Forms

We have the pairing(
Sk(Γ)⊕ S̄k(Γ)

)
×Mk(Γ)→ C

〈(f1, f2) ,P{α, β}〉 =

∫ β

α

f1(z)P(z , 1)dz +

∫ β

α

f2(z)P(z̄ , 1)dz̄

Shokurov
The pairing

〈·, ·〉 : Sk(Γ)⊕ S̄k(Γ)× Sk(Γ)⊗Q C→ C

is a non-degenerate pairing of complex vector spaces.
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Manin Symbols

Restrict to {α, β} which are unimodular. They generate all modular
symbols. Let

S =

[
0 1
−1 0

]
, R =

[
0 1
−1 1

]
, and J =

[
−1 0
0 −1

]
Then Mk(Γ0(N)) is the Q-vector space generated by

x = X iY k−2−i(c : d) ∈ P1,

modulo the relations
x + xS = 0

x + xR + xR2 = 0

x − xJ = 0
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Main Symbols

To write any {α, β} in terms of unimodular pairs, write
{α, β} = {α, 0}+ {0, β}, and then express {0, α} in terms of
continued fraction convergents of α

4

7
= 0 +

1

1 + 1
1+ 1

3

The convergents are

b−2

a−2
=

0

1
,

b−1

a−1
=

1

0
,

b0

a0
=

0

1
,

b1

a1
=

1

1
,

b2

a2
=

1

2
,

b3

a3
=

4

7

Therefore we have

{0, 4/7} = {0,∞}+ {∞, 0}+ {0, 1}+ {1, 1/2}+ {1/2, 4/7}
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Example: Weight 2 symbols on Γ0(11)
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Example: Weight 2 symbols on Γ0(11)
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Example: Weight 6 forms on Γ0(7)
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Manin Symbols
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Computing Modular Forms

The dimension of S2 is 2. Therefore there is one dimensional space of
cusp forms.
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More examples

M2(SL2(Z)

Surya Teja GavvaRutgers University Modular Forms Triangle Groups, Belyi Uniformization, and Modularity Bhaskaracharya Pratishthana, Trimester II, Feb 2022 49 / 53



More examples

M2(Γ0(2))
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More examples

M4(SL2(Z))
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More examples

M4(Γ0(2))
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