## Modular Forms

Surya Teja Gavva<br>Rutgers University

Triangle Groups, Belyi Uniformization, and Modularity Bhaskaracharya Pratishthana, Trimester II, Feb 2022

## Modular Forms

Eichler -
"There are five elementary arithmetical operations: addition, subtraction, multiplication, division, and modular forms."

## Applications

- Reciprocity - Modularity, Functoriality
- Class Numbers, Complex Multiplication, CFT for $\mathbb{Q}(\sqrt{-D})$
- Quadratic Forms, Theta series
- Lattices, Elliptic Curves, Modular Curves
- Galois representations, congruences
- Finite Dimensionality and resulting identities
- Hecke Operators, Multiplicativity
- Trace Formulae, geodesics, regulators
- Periods, L-values
- Irrationality of $\zeta(3)$
- Borcherd's products, Monstrous Moonshine, Kac-Moody algebras
- Spectral Gap, Ramanujan Graphs
- Sphere Packing
- Equidistribution of integer points on sphere.
- Ruziewiecz's problem
- Elliptic genera - Spin manifolds, Representations of the cobordism ring.


## Modular Forms

Modular forms are functions on the upper half plane $\mathbb{H}$ that transform nicely under the action of a discrete subgroup $\Gamma$.

## Definition

A function $f: \mathbb{H} \rightarrow \mathbb{C}$ is called a modular form of weight $k$ for $\Gamma$ if
(1) it is holomorphic
(2) Modularity: $\left.f\right|_{k}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)(z)=f\left(\frac{a z+b}{c z+d}\right)(c z+d)^{-k}=f(z)$

$$
\text { for all }\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma
$$

(0) Holomorphic at Cusps: $\left(\left.f\right|_{k}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)(z)$ tends to a limit as

$$
z \rightarrow i \infty \text { for every }\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z})
$$

## Congruence Subgroups

$$
\begin{gathered}
\mathrm{SL}_{2}(\mathbb{R})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a d-b c=1, \text { and } a, b, c, d \in \mathbb{R}\right\} \\
\Gamma_{0}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}):\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
* & * \\
0 & *
\end{array}\right) \quad(\bmod N)\right\} \\
\Gamma_{1}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}):\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right) \quad(\bmod N)\right\}
\end{gathered}
$$

## Fourier Expansion

$f(z)$ has a Fourier expansion.

$$
f(z)=\sum_{n=0}^{\infty} a_{n} e^{2 \pi i n z / \mu}
$$

## Noncongruence subgroups

There are lot of noncongruence subgroups of $S L_{2}(\mathbb{Z})$ (almost all of them!)
Consider type-II character subgroup of $\Gamma^{0}(p)$ of index $p$. There are $p+1$ of them out of which $p$ are noncongruence.

## Unbounded Denominators

There are 6 index- 5 type II( $A$ ) character groups in $\Gamma^{0}(11)$. Among them, one is $\Gamma^{1}(11)$ and the other 5 are noncongruence. Moreover every one of these noncongruence subgroups satisfies the condition (UBD).

$$
\begin{aligned}
& f_{P}=w^{-5}+w^{-4}-3 w^{-3}+13 w^{-2}+20 w^{-1}-23+\cdots \\
& f_{Q+P}=w^{-5}+w^{-4}+\frac{23+\sqrt{5}+i(3+\sqrt{5}) \sqrt{25+2 \sqrt{5}} w^{-3}+\cdots}{4} \\
& f_{Q+2 P}=w^{-5}+w^{-4}+\frac{99-33 \sqrt{5}+i(23+3 \sqrt{5}) \sqrt{25+2 \sqrt{5}}}{44} w^{-3}+\cdots \\
& f_{Q+3 P}=w^{-5}+w^{-4}+\frac{99-33 \sqrt{5}-i(23+3 \sqrt{5}) \sqrt{25+2 \sqrt{5}}}{44} w^{-3}+\cdots \\
& f_{Q+4 P}=w^{-5}+w^{-4}+\frac{23+\sqrt{5}-i(3+\sqrt{5}) \sqrt{25+2 \sqrt{5}}}{4} w^{-3}+\cdots
\end{aligned}
$$

## Unbounded Denominators

$\sqrt[5]{f_{P_{i}}}$ have unbounded deonominators

## Existence of Modular Forms

We have $k<0$

$$
a_{n} e^{-2 \pi n y}=\int_{0}^{1} f(z) e^{-2 \pi i n x} d x \ll y^{-k / 2} \rightarrow 0 \text { as } y \rightarrow 0
$$

For $k=0$, we have bounded holomoprhic function $f(z)$. Hence the only modular form of weight $k \leq 0$ are the constant functions.
(Why) Do they exist for higher levels?

## Eisenstein Series

For an even integer $k \geq 4$, the non-normalized weight $k$ Eisenstein series is the function

$$
G_{k}(z)=\sum_{m, n \in \mathbb{Z}}^{*} \frac{1}{(m z+n)^{k}}
$$

It has the Fourier expansion

$$
G_{k}(z)=2 \zeta(k)+2 \cdot \frac{(2 \pi i)^{k}}{(k-1)!} \cdot \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n}
$$

## Follows from Poisson summation or the using the Fourier formula

$$
\pi \cot (\pi z)=\frac{1}{z}+\sum_{m=1}^{\infty}\left(\frac{1}{z+m}+\frac{1}{z-m}\right)
$$

$G_{2}$

$$
\begin{gathered}
G_{2}(\tau)=2 \zeta(2)-8 \pi^{2} \sum_{n=1}^{\infty} \sigma(n) q^{n}, \quad q=e^{2 \pi i \tau}, \sigma(n)=\sum_{\substack{d \mid n \\
d>0}} d \\
\left(G_{2} \mid \gamma\right)(\tau)=G_{2}(\tau)-\frac{2 \pi i c}{c \tau+d}
\end{gathered}
$$

## Theta Series

$$
\theta(\tau)=\sum_{t \in \mathbf{Z}} e^{2 \pi i t^{2} \tau}
$$

Poisson summation implies

$$
\theta(-1 /(4 \tau))=\sqrt{-2 i \tau} \theta(\tau)
$$

$$
\theta(\gamma(\tau))^{4}=(c \tau+d)^{2} \theta(\tau)^{4} \text { for } \gamma= \pm\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \text { and } \gamma= \pm\left[\begin{array}{ll}
1 & 0 \\
4 & 1
\end{array}\right]
$$

## Cusp Forms

Subspace where the functions vanish at all the cusps.

$$
f(z)=\sum_{n=1}^{\infty} a_{n} e^{2 \pi i n z}
$$

Weight 12 cusp form of level 1.

$$
\Delta(z)=\sum_{n \geq 1} \tau(n) q^{n}=q \prod_{n \geq 1}\left(1-q^{n}\right)^{24}=\eta(z)^{24}
$$

## Ramanujan Conjectures

(1) $\tau(m n)=\tau(m) \tau(n)$ if $\operatorname{gcd}(m, n)=1$ (meaning that $\tau(n)$ is a multiplicative function)
(2) $\tau\left(p^{r+1}\right)=\tau(p) \tau\left(p^{r}\right)-p^{11} \tau\left(p^{r-1}\right)$ for $p$ prime and $r>0$.
(3) $|\tau(p)| \leq 2 p^{11 / 2}$ for all primes $p$.

## Finite Dimensionality

## Finite Dimensionality of $M_{k}(\Gamma)$ can proved from several type of arguments: Riemann-Roch, Trace-Formulae (Eichler-Shimura, Petersson.)

$$
\operatorname{dim} M_{k}\left(\Gamma_{0}(q), \chi\right)=\frac{k-1}{12}\left[\Gamma_{0}(1): \Gamma_{0}(q)\right]+O(\sqrt{q k})
$$

```
    M=ModularForms(Gamma0(13), 6)
    M
Modular Forms space of dimension 7 for Congruence Subgroup Gamma0(13) of weight 6 over Rational Fiel
    M=ModularForms(Gamma0(13), 7)
    M
Modular Forms space of dimension 0 for Congruence Subgroup Gamma0(13) of weight 7 over Rational Fiel
    M=ModularForms(Gamma0(13), 3)
    M
Modular Forms space of dimension 9 for Congruence Subgroup Gamma0(13) of weight 8 over Rational Fiel
    M=CuspForms(Gamma0(13), 8)
    M
Cuspidal subspace of dimension 7 of Modular Forms space of dimension 9 for Congruence Subgroup Gamma
    M=CuspForms(Gamma0(13), 10)
    M
Cuspidal subspace of dimension 9 of Modular Forms space of dimension 11 for Congruence Subgroup Gamm
```


## Ring of Modular Forms of Level 1

$$
\begin{gathered}
\mathcal{M}\left(\mathrm{SL}_{2}(\mathbf{Z})\right)=\bigoplus_{k \in \mathbf{Z}} \mathcal{M}_{k}\left(\mathrm{SL}_{2}(\mathbf{Z})\right) \\
\mathcal{M}\left(\mathrm{SL}_{2}(\mathbf{Z})\right)=\mathbf{C}\left[\mathrm{E}_{4}, E_{6}\right], \quad \mathcal{S}\left(\mathrm{SL}_{2}(\mathbf{Z})\right)=\Delta \cdot \mathcal{M}\left(\mathrm{SL}_{2}(\mathbf{Z})\right)
\end{gathered}
$$

## Ring of Modular Forms

```
    M=ModularFormsRing(Gamma0( ))
sage: M
Ring of modular forms for Modular Group SL(2,Z) with coefficients in Rational Field
    iage: M.generators()
[(4,
    1 +240*q + 2160*q^2 + 6720*q^3 + 17520*q^4 + 30240*q^5 + 60480*q^6 + 82560*q^7 + 140400*q^8 + 181
    (6,
    1 - 504*q-16632*q^2 - 122976*q^3 - 532728*q^4 - 1575504*q^5 - 4058208*q^6 - 8471232*q^7 - 170478
```

```
        M=ModularFormsRing(Gamma0(1i))
    M.generators()
[(2,
    1 + 12*q^2 + 12*q^3 + 12*q^4 + 12*q^5 + 24*q^6 + 24*q^
    (2, q-2*q^2 - q^^3 + 2*q^4 + q^ 5 + 2*q^6 - 2*q^7 - 2*q^9 + 0(q^10)),
    (4, 1 + 0(q^10))]
```


## Hecke Operators

Different descriptions: Double Cosets, Lattices (sublattices), Hecke correspondences etc. Explicitly for $M_{k}\left(\Gamma_{0}(N), \chi\right)$

$$
T(n) f(z)=\frac{1}{n} \sum_{a d=n} \chi(a) a^{k} \sum_{0 \leqslant b<d} f\left(\frac{a z+b}{d}\right)
$$

$T_{n},(n, q)=1$ are commuting normal operators.

## Petersson inner product on $M_{k}\left(\Gamma_{0}(q), \chi\right)$

$$
(f, g\rangle=\int_{\mathbb{H} / \Gamma} f(z) \overline{g(z)} y^{k} d \mu(z)
$$

## Poincare Series

$$
\begin{gathered}
E_{k}(z)=\sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma_{0}(N)} \bar{\chi}(\gamma)(c z+d)^{-k} \\
P_{m}(z)=\sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma_{0}(N)} \bar{\chi}(\gamma)(c z+d)^{-k} e(m \gamma z)
\end{gathered}
$$

Poincare series span $S_{k}\left(\Gamma_{0}(N), \chi\right)$

## Petersson Trace Formula

$$
\begin{aligned}
& \sum_{f \in H_{k}(q, \chi)}^{h} \lambda_{f}(n) \overline{\lambda_{f}(m)} \\
= & \delta(m, n)+2 \pi i^{-k} \sum_{\substack{c>0 \\
c \equiv 0(\bmod q)}} c^{-1} S_{\chi}(m, n ; c) J_{k-1}\left(\frac{4 \pi \sqrt{m n}}{c}\right)
\end{aligned}
$$

## Atkin-Lehner (Newforms/Oldforms)

Can the eigenvalues of $T_{n}$ for an eigenform $f$ determine $f$ ? Multiplicity one: True only for the subspace of newforms. (Orthogonal to oldforms coming from lower levels)

For $d \mid N / M$,

$$
\alpha_{d}: S_{k}\left(\Gamma_{1}(M)\right) \rightarrow S_{k}\left(\Gamma_{1}(N)\right): \quad f(\tau) \mapsto f(d \tau)
$$

$$
\bigoplus_{d \mid(N / M)} S_{k}\left(\Gamma_{1}(M)\right) \rightarrow S_{k}\left(\Gamma_{1}(N)\right)
$$

## Elliptic Curves

$$
E: y^{2}=x^{3}-x
$$

The L-function matches with a Hecke L-function

$$
L(E, s)=L(s, \chi)=L(s, f)
$$

where

$$
f(z)=\frac{1}{4} \sum_{\alpha \in \mathbf{Z} \mid i]} \rho(\alpha) \alpha e\left(z|\alpha|^{2}\right)
$$

This is the CM case.

## Computations

$M_{k}\left(\Gamma_{1}(N)\right)$ are computable. That is we want compute arbitrary Fourier coefficients of a basis of forms given $k$ and $N$ and the required precision.

## Computations

```
sage: M=ModularForms(Gamma0(2022), 8, prec=10)
M
Modular Forms space of dimension 2370 for Congruence Subgroup Gamme
    M=ModularForms(Gamma0(11), 4, prec=10)
    M
Modular Forms space of dimension 4 for Congruence Subgroup Gamma0(1
    M.basis()
[
q + 3*q^3 - 6*q^4 - 7*q^5 - 8*q^6 + 14*q^^7 + 4*q^8 + 14*q^9 + 0(q^1
```



```
1 + 0(q^10),
q + 9*q^2 + 28*q^3 + 73*q^4 + 126*q^5 + 252*q^6 + 344*q^7 + 585*q^&
]
```


## Weight 2 Modular Symbols

The group $\mathcal{M}_{2}$ is the free abelian group on symbols $\{\alpha, \beta\}$ with

$$
\alpha, \beta \in \mathbb{P}^{1}(\mathbb{Q})=\mathbb{Q} \cup\{\infty\}
$$

modulo the relations, (for all $\alpha, \beta, \gamma \in \mathbb{P}^{1}(\mathbb{Q}), g \in \Gamma$ )
(1) $\{\alpha, \beta\}=-\{\beta, \alpha\} \quad$ (2-term relation)
(2) $\{\alpha, \beta\}=\{\alpha, \gamma\}+\{\gamma, \beta\}$ (3-term relation)
(3) $\{g \alpha, g \beta\}=\{\alpha, \beta\} \quad$ for all $g \in \Gamma \quad$ ( $\Gamma$-action)
(9) $\{\alpha, g \alpha\} \in H_{1}\left(X_{\Gamma} ; \mathbb{Z}\right)$
(5) $\{\alpha, g \alpha\}=\{\beta, g \beta\}$
$\{\alpha, \beta\}$ is a class of geodesic from $\alpha$ to $\beta$.

## Modular Symbols

These symbols generate relative homology $H_{1}\left(X_{\Gamma}, \partial X_{\Gamma}, \mathbb{Z}\right)$

To get $H_{1}\left(X_{\Gamma}, \mathbb{Z}\right)$ we need to consider $\mathcal{S}_{2}$, the part of $\mathcal{M}_{2}$ which lies in the kernel of the boundary map to the free group on cusps.

$$
\{\alpha, \beta\} \in \mathcal{M}_{2} \rightarrow\{\beta\}-\{\alpha\}
$$

## Modular Symbols and Modular Forms

Modular symbols are dual to Modular Forms. We have a pairing

$$
\begin{gathered}
S_{2}(\Gamma) \times H_{1}\left(X_{\Gamma}, \mathbb{R}\right)=S_{2}(\Gamma) \times\left(\mathcal{S}_{2} \otimes \mathbb{R}\right) \rightarrow \mathbb{C} \\
\langle f,\{\alpha, \beta\}\rangle \rightarrow 2 \text { pii } \int_{\alpha}^{\beta} f(z) d z
\end{gathered}
$$

## Hecke Operators

The pairing respects Hecke action. For $\Gamma_{0}(N)$, the operators are given by

$$
T_{p}(\{\alpha, \beta\})=\left(\begin{array}{cc}
p & 0 \\
0 & 1
\end{array}\right)\{\alpha, \beta\}+\sum_{r \bmod p}\left(\begin{array}{ll}
1 & r \\
0 & p
\end{array}\right)\{\alpha, \beta\}
$$

We have

$$
\left\langle T_{n} f,\{\alpha, \beta\}\right\rangle=\left\langle f, T_{n}\{\alpha, \beta\}\right\rangle
$$

## Weight $k$ Modular Symbols

$\mathcal{M}_{2}:=\mathbb{Q}$-vector space on symbols $\{\alpha, \beta\}$ modulo the 2 term, 3-terms relations. $\mathcal{M}_{k}:=\mathbb{Q}[X, Y]_{k-2} \otimes_{\mathbb{Q}} \mathcal{M}_{2}$

$$
\begin{aligned}
&(g P)(X, Y):=P\left(g^{-1}\left[\begin{array}{l}
X \\
Y
\end{array}\right]\right) \\
& g\{\alpha, \beta\}:=\{g \alpha, g \beta\} \\
& g(P\{\alpha, \beta\})=g P\{g \alpha, g \beta\}
\end{aligned}
$$

$$
\mathcal{M}_{k}(\Gamma):=\mathcal{M}_{k} /(P\{\alpha, \beta\}-g(P\{\alpha, \beta\}))
$$

## Weight $k$ cuspidal symbols

$$
\begin{gathered}
\mathcal{B}_{2}:=\mathbb{Q} \text {-vector space on symbols }\{\alpha\} \text { for } \alpha \in \mathbb{P}^{1}(\mathbb{Q}) \\
\mathcal{B}_{k}:=\mathbb{Q}[X, Y]_{k-2} \otimes_{\mathbb{Q}} \mathcal{B}_{2} \\
\mathcal{B}_{k}(\Gamma):=\mathcal{B}_{k} /(x-g x) \\
\quad \partial(P\{\alpha, \beta\})=P\{\beta\}-P\{\alpha\} \\
\quad \mathcal{S}_{k}(\Gamma):=\operatorname{ker}(\partial)
\end{gathered}
$$

## Modular Symbols and Modular Forms

We have the pairing

$$
\begin{gathered}
\left(S_{k}(\Gamma) \oplus \bar{S}_{k}(\Gamma)\right) \times \mathcal{M}_{k}(\Gamma) \rightarrow \mathbb{C} \\
\left\langle\left(f_{1}, f_{2}\right), P\{\alpha, \beta\}\right\rangle=\int_{\alpha}^{\beta} f_{1}(z) P(z, 1) d z+\int_{\alpha}^{\beta} f_{2}(z) P(\bar{z}, 1) d \bar{z}
\end{gathered}
$$

## Shokurov

The pairing

$$
\langle\cdot, \cdot\rangle: S_{k}(\Gamma) \oplus \bar{S}_{k}(\Gamma) \times \mathcal{S}_{k}(\Gamma) \otimes_{\mathbb{Q}} \mathbb{C} \rightarrow \mathbb{C}
$$

is a non-degenerate pairing of complex vector spaces.

## Manin Symbols

Restrict to $\{\alpha, \beta\}$ which are unimodular. They generate all modular symbols. Let

$$
S=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \quad R=\left[\begin{array}{cc}
0 & 1 \\
-1 & 1
\end{array}\right], \quad \text { and } \quad J=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

Then $\mathcal{M}_{k}\left(\Gamma_{0}(N)\right)$ is the $\mathbb{Q}$-vector space generated by

$$
x=X^{i} Y^{k-2-i}(c: d) \in \mathbb{P}^{1}
$$

modulo the relations

$$
\begin{array}{r}
x+x S=0 \\
x+x R+x R^{2}=0 \\
x-x J=0
\end{array}
$$

## Main Symbols

To write any $\{\alpha, \beta\}$ in terms of unimodular pairs, write $\{\alpha, \beta\}=\{\alpha, 0\}+\{0, \beta\}$, and then express $\{0, \alpha\}$ in terms of continued fraction convergents of $\alpha$

$$
\frac{4}{7}=0+\frac{1}{1+\frac{1}{1+\frac{1}{3}}}
$$

The convergents are

$$
\frac{b_{-2}}{a_{-2}}=\frac{0}{1}, \quad \frac{b_{-1}}{a_{-1}}=\frac{1}{0}, \quad \frac{b_{0}}{a_{0}}=\frac{0}{1}, \quad \frac{b_{1}}{a_{1}}=\frac{1}{1}, \quad \frac{b_{2}}{a_{2}}=\frac{1}{2}, \quad \frac{b_{3}}{a_{3}}=\frac{4}{7}
$$

Therefore we have

$$
\{0,4 / 7\}=\{0, \infty\}+\{\infty, 0\}+\{0,1\}+\{1,1 / 2\}+\{1 / 2,4 / 7\}
$$

## Example: Weight 2 symbols on $\Gamma_{0}(11)$

```
set_modsym_print_mode ('modular')
    M = ModularSymbols(Gamma0(11), 2)
    M.basis()
({Infinity, 0}, {-1/8, 0}, {-1/9, 0})
(sage: S=M.cuspidal_submodule()
    S.integral_basis()
({-1/8, 0}, {-1/9, 0})
```


## Example: Weight 2 symbols on $\Gamma_{0}(11)$

```
set_modsym_print_mode ('modular')
    M = ModularSymbols(Gamma0(11), 2)
    M.basis()
({Infinity, 0}, {-1/8, 0}, {-1/9, 0})
(sage: S=M.cuspidal_submodule()
    S.integral_basis()
({-1/8, 0}, {-1/9, 0})
```


## Example: Weight 6 forms on $\Gamma_{0}(7)$

```
    M = ModularSymbols(Gamma0(7), 6)
    M.dimension()
8
    M.basis()
(X^4*{0, Infinity},
Y^4*{Infinity, 0},
X^4*{0, 1},
16* X^4*{-1/2,0} + 32*X^3*Y*{-1/2, 0} + 24*X^2*Y^2*{-1/2,0} + 8*X*Y^3*{-1/2,0} + Y^ 4*{-1/2,0},
```





```
1296*\mp@subsup{X}{}{\wedge}4*{-1/6,0} + 864*X^3*Y*{-1/6,0} + 216*X^2* Y^2*{-1/6, 0} + 24*X*Y^3*{-1/6,0} + Y^4*{-1/6,0})
```


## Manin Symbols

```
    M = ModularSymbols(Gamma0(11), 2)
Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign 0 over Rational Field
iage: M.manin_generators()
[(0,1),
    (1,0),
    (1,1),
    (1,2),
    (1,3),
    (1,4),
    (1,5),
    (1,6),
    (1,7),
    (1,8),
    (1,9),
    (1,10)]
age: [M.manin_generators()[i] for i in M.manin_basis()]
[(1,0), (1,8), (1,9)]
sage: [x.modular_symbol_rep() for x in M.basis()]
[{Infinity, 0}, {-1/8, 0}, {-1/9, 0}]
```


## Computing Modular Forms

The dimension of $\mathcal{S}_{2}$ is 2 . Therefore there is one dimensional space of cusp forms.

```
    M = ModularSymbols(Gamma0(11), 2)
    S=M.cuspidal_submodule()
    S.T(2).matrix()
[-2 0]
[ 0 - -2]
    S.T(3).matrix()
[-1 0]
[ 0 -1]
```


## More examples

$M_{2}\left(S L_{2}(\mathbb{Z})\right.$

## More examples

$M_{2}(\Gamma 0(2))$

## More examples

$M_{4}\left(S L_{2}(\mathbb{Z})\right)$

## More examples

$M_{4}(\Gamma 0(2))$

## References

- https://wstein.org/books/modform/modform/index.html
- ON MODULAR FORMS FOR SOME NONCONGRUENCE SUBGROUPS OF SL2(Z), CHRIS A. KURTH AND LING LONG
- https://www.williamstein.org/edu/Fall2003/252/ references/magma/ModSym.pdf

