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MODULAR SYMBOLS

0.1 Introduction

This chapter, which was written by William Stein (was@math.harvard.edu) with the help
of feedback from Kevin Buzzard, describes how to compute with modular symbols using
Magma. Modular symbols provide a presentation for certain homology groups, and as such
they can be used to compute an eigenform basis for spaces of cusp forms Sk(N, ε), where
k ≥ 2 is an integer and ε is an arbitrary Dirichlet character. Their generality makes
modular symbols a natural tool in applications ranging from verification of modularity of
Galois representations to elliptic curve computations.

Our implementation of modular symbols algorithms in Magma was deeply influenced
by [Cre92, Cre97, Mer94 ]. The algorithms for computing arithmetic invariants of modular
abelian varieties are based on [Ste00]. Those unfamiliar with modular symbols might wish
to consult [Ste02] and the references contained therein and peruse [FM99].

0.1.1 Modular Symbols

The modular group SL2(Z) is the group of 2× 2 integer matrices with determinant 1. For
each positive integer N let Γ0(N) denote the subgroup of SL2(Z) of matrices that are
upper triangular modulo N . As explained in the survey paper [DI95], there is an algebraic
curve X0(N) over Q attached to Γ0(N). The Riemann surface attached to X0(N) is a
compactified quotient of the upper half plane by the action of Γ0(N) via linear fractional
transformations. Modular symbols provide an explicit computable presentation for certain
“(co-)homology groups” attached to modular curves X0(N).

Let P1(Q) denote the set Q ∪ {∞}, and fix a field F . Let M denote the F -vector
space generated by the formal symbols {a, b}, with a, b ∈ P1(Q), modulo the relations
{a, b} + {b, c} + {c, a} = 0 for all a, b, c ∈ Q. (The symbol {a, b} can be visualized as the
homology class of a geodesic path from a to b in the upper half plane.) Fix a positive integer
k. A weight-k symbol is a formal product X iY k−2−i{a, b}, where X iY k−2−i ∈ F [X,Y ].
Denote by Mk the formal F -vector space with basis the set of all weight-k modular symbols
(thus Mk ≈M⊗Symk−2(F×F)). The group GL2(Q) acts on the left on Mk; the matrix

g =

(

u v
w z

)

in GL2(Q) acts by

g(XiY k−2−i{a, b}) = (zX − vY )i(−wX + uY )k−2−i

{

ua+ v

wa+ z
,
ub+ v

wb+ z

}

.
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A mod N Dirichlet character ε is a homomorphism

ε : (Z/NZ)∗ → F ∗.

The vector space Mk(N, ε;F) of modular symbols of weight k, level N and character ε
over F is the quotient of Mk by the subspace generated by all x − ε(u)g(x), for x in

Mk and g =

(

u v
w z

)

∈ Γ0(N). We denote the equivalence class that defines a modular

symbol by giving a representative element.
The space of modular symbols is a finite-dimensional vector space, and there is a

natural finite presentation for it in terms of Manin symbols.

0.2 Basics

0.2.1 Verbose Output

The verbosity level for modular symbols computations can be set using the command
SetVerbose("ModularSymbols",n), where n is 0 (silent), 1 (verbose), or 2 (very verbose).
(The verbose flag for modular symbols was called ModularForms in Magma version 2.7.)

0.2.2 Categories

Spaces of modular symbols belong to the category ModSym, and groups of Dirichlet char-
acters form a category GrpDrch. The category SetCsp has exactly one object Cusps(),
which is the set P1(Q) = Q∪{∞} introduced above. The element ∞ of P1(Q) is entered
using the expression Cusps()!Infinity().

Example H0E1

We compute a basis for the space of modular symbols of weight 2, level 11 and trivial character.

> M := ModularSymbols(11,2); M;

Full modular symbols space for Gamma_0(11) of weight 2 and dimension 3

over Rational Field

> Type(M);

ModSym

> Basis(M);

[

{-1/7, 0},

{-1/5, 0},

{oo, 0}

]

> M!<1,[1/5,1]>;

{-1/5, 0}

> // the modular symbols {1/5,1} and {-1/5,0} are equal.

> Type(M!<1,[1/5,1]>);

ModSymElt



Ch. 0 MODULAR SYMBOLS 3

Using SetVerbose, we can see how the computation progresses.

> SetVerbose("ModularSymbols",2);

> M := ModularSymbols(11,2);

Computing space of modular symbols of level 11 and weight 2....

I. Manin symbols list.

(0 s)

II. 2-term relations.

(0.019 s)

III. 3-term relations.

Computing quotient by 4 relations.

(0.009 s)

(total time to create space = 0.029 s)

> SetVerbose("ModularSymbols",0);

Modular symbols can be input using Cusps().

> M := ModularSymbols(11,2);

> P := Cusps(); P;

Set of all cusps

> Type(P);

SetCsp

> oo := P!Infinity();

> M!<1,[oo,P!0]>; // note that 0 must be coerced into P.

{oo, 0}

> M!<1,[1/5,1]> + M!<1,[oo,P!0]>;

{-1/5, 0} + {oo, 0}

Modular symbols are also defined over finite fields.

> M := ModularSymbols(11,2,GF(7)); M;

Full modular symbols space for Gamma_0(11) of weight 2 and dimension 3

over Finite field of size 7

> BaseField(M);

Finite field of size 7

> 7*M!<1,[1/5,1]>;

0
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0.3 Creation Functions

0.3.1 Ambient Spaces

An ambient space of modular symbols is created by specifying a character, weight, and
optional sign. The signature ModularSymbols(eps, k, sign) is the most general. (The
level is the modulus of the character eps.)

Warning: Certain functions, such as DualVectorSpace, may fail when given as input a
space of modular symbols over a field of positive characteristic, because the Hecke operators
Tp, with p prime to the level, need not be semisimple.

ModularSymbols(N)

The space of modular symbols of level N , weight 2, and trivial character over the
rational numbers.

ModularSymbols(N, k)

The space of modular symbols of level N , weight k, and trivial character over the
rational numbers.

ModularSymbols(N, k, F)

The space of modular symbols of level N , weight k, and trivial character over the
field F .

ModularSymbols(N, k, sign)

The space of modular symbols of level N , weight k, trivial character, and given sign
over the rational numbers.

ModularSymbols(N, k, F, sign)

The space of modular symbols of level N , weight k, trivial character, and given sign,
over the field F.

ModularSymbols(eps, k)

The space of modular symbols of weight k and character ε. Note that ε determines
the level and the base field, so they do not need to be specified.

ModularSymbols(eps, k, sign)

The space of modular symbols of weight k and character ε. The level and base
field are specified as part of ε. The third argument “sign” allows for working in
certain quotients. The possible values are −1, 0, and +1, which correspond to the
−1 quotient, full space, and +1 quotient, respectively. The +1 quotient of M is
M/(∗ − 1)M , where ∗ is StarInvolution(M).

DisownChildren(M)

Ambient modular symbols spaces M can create circular references, which cause
the memory manager to never de-allocate M . Calling DisownChildren forces the
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circular references created by M to be deleted. In practice, if you are doing a
computation involving many different spaces of modular symbols, it’s probably best
to use a scripting language such as Perl, Python, or even Magma, and start a separate
Magma process for each computation.

Example H0E2

We create spaces of modular symbols in several different ways.

> M37 := ModularSymbols(37); M37;

Full modular symbols space for Gamma_0(37) of weight 2 and dimension 5

over Rational Field

> Basis(M37);

[

{-1/29, 0},

{-1/22, 0},

{-1/12, 0},

{-1/18, 0},

{oo, 0}

]

As M37 is a space of modular symbols, it is not incorrect that its dimension is different than that
of the three-dimensional space of modular forms M2(Γ0(37)). We have

dimM2(Γ0(37)) = 2× (dim cusp forms) + 1× (dim Eisenstein series) = 5.

> MF := ModularForms(Gamma0(37),2);

> 2*Dimension(CuspidalSubspace(MF)) + Dimension(EisensteinSubspace(MF));

5

Next we decompose M37 with respect to the Hecke operators T2, T3, and T5.

> D := Decomposition(M37,5); D;

[

Modular symbols space for Gamma_0(37) of weight 2 and dimension 1

over Rational Field,

Modular symbols space for Gamma_0(37) of weight 2 and dimension 2

over Rational Field,

Modular symbols space for Gamma_0(37) of weight 2 and dimension 2

over Rational Field

]

The first factor corresponds to the standard Eisenstein series, and the second corresponds to an
elliptic curve:

> E := EllipticCurve(D[2]); E;

Elliptic Curve defined by y^2 + y = x^3 + x^2 - 23*x - 50 over

Rational Field

> Rank(E);

0
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We now create the space M12(1) of weight 12 modular symbols of level 1.

> M12 := ModularSymbols(1,12); M12;

Full modular symbols space for Gamma_0(1) of weight 12 and dimension 3

over Rational Field

> Basis(M12);

[

X^10*{0, oo},

X^8*Y^2*{0, oo},

X^9*Y*{0, oo}

]

> DimensionCuspFormsGamma0(1,12);

1

> R<z>:=PowerSeriesRing(Rationals());

> Delta(z)+ O(z^7);

z - 24*z^2 + 252*z^3 - 1472*z^4 + 4830*z^5 - 6048*z^6 + O(z^7)

As a module, cuspidal modular symbols equal cuspforms with multiplicity two.

> M12 := ModularSymbols(1,12);

> HeckeOperator(CuspidalSubspace(M12),2);

[-24 0]

[ 0 -24]

> qExpansionBasis(CuspidalSubspace(M12),7);

[

q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 - 6048*q^6 + O(q^7)

]

For efficiency purposes, since one is often interested only in q-expansion, it is possible to work in
the quotient of the space of modular symbols by all relations ∗x = x (or ∗x = −x), where ∗ is
StarInvolution(M). In either of these quotients (except possibly in characteristic p > 0) the cusp
forms appear with multiplicity one instead of two.

> M12plus := ModularSymbols(1,12,+1);

> Basis(M12plus);

[

X^10*{0, oo},

X^8*Y^2*{0, oo}

]

> CuspidalSubspace(M12plus);

Modular symbols space for Gamma_0(1) of weight 12 and dimension 1 over

Rational Field

> qExpansionBasis(CuspidalSubspace(M12),7);

[

q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 - 6048*q^6 + O(q^7)

]

The following is an example of how to create Dirichlet characters in Magma, and how to create a
space of modular symbols with nontrivial character. For more details, see Section 0.3.4.

> G<a,b,c> := DirichletGroup(16*7,CyclotomicField(EulerPhi(16*7)));
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> Order(a);

2

> Conductor(a);

4

> Order(b);

4

> Conductor(b);

16

> Order(c);

6

> Conductor(c);

7

> eps := a*b*c;

> M := ModularSymbols(eps,2); M;

Full modular symbols space of level 112, weight 2, character a*b*c,

and dimension 32 over Cyclotomic Field of order 48 and degree 16

> BaseField(M);

Cyclotomic Field of order 48 and degree 16

0.3.2 Labels

It is also possible to create many spaces of modular symbols for Γ0(N) by passing a
“descriptive label” as an argument to ModularSymbols. The most specific label is a string
of the form [Level]k[Weight][IsogenyClass], where [Level] is the level, [Weight] is
the weight, [IsogenyClass] is a letter code: A, B, ..., Z, AA, BB, ..., ZZ, AAA, ..., and k is a
place holder to separate the level and the weight. If the label is [Level][IsogenyClass],
then the weight k is assumed equal to 2. If the label is [Level]k[Weight] then the
cuspidal subspace of the full ambient space of modular symbols of weight k and level N
is returned. The following are valid labels: 11A, 37B, 3k12A, 11k4. The ordering used on
isogenies classes is lt; see the documentation for SortDecomposition.

Note: There is currently no intrinsic that, given a space of modular symbols, returns its
label.

Warning: For 146 of the levels between 56 and 450, our ordering of weight 2 rational
newforms disagrees with the ordering used in [Cre97]. Fortunately, it is easy to create a
space of modular symbols from one of Cremona’s labels using the associated elliptic curve.

> E := EllipticCurve(CremonaDatabase(),"56A");

> M1 := ModularSymbols(E);

Observe that Cremona’s "56A" is different from ours.

> M2 := ModularSymbols("56A");

> M2 eq M1;

false
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ModularSymbols(s, sign)

ModularSymbols(s)

The space of modular symbols described by a label.

Example H0E3

The cusp form ∆(q) is related to the space of modular symbols whose label is "1k12A".

> Del := ModularSymbols("1k12A"); Del;

Modular symbols space for Gamma_0(1) of weight 12 and dimension 2 over

Rational Field

> qEigenform(Del,5);

q - 24*q^2 + 252*q^3 - 1472*q^4 + O(q^5)

Next, we create the space corresponding to the first newform on Γ0(11) of weight 4.

> M := ModularSymbols("11k4A"); M;

Modular symbols space for Gamma_0(11) of weight 4 and dimension 4 over

Rational Field

> AmbientSpace(M);

Full modular symbols space for Gamma_0(11) of weight 4 and dimension 6

over Rational Field

> qEigenform(M,5);

q + a*q^2 + (-4*a + 3)*q^3 + (2*a - 6)*q^4 + O(q^5)

> Parent($1);

Power series ring in q over Univariate Quotient Polynomial Algebra in

a over Rational Field with modulus a^2 - 2*a - 2

We next create the +1 quotient of the cuspidal subspace of weight-4 modular symbols of level 37.

> M := ModularSymbols("37k4",+1); M;

Modular symbols space for Gamma_0(37) of weight 4 and dimension 9 over

Rational Field

> AmbientSpace(M);

Full modular symbols space for Gamma_0(37) of weight 4 and dimension

11 over Rational Field

> Factorization(CharacteristicPolynomial(HeckeOperator(M,2)));

[

<x^4 + 6*x^3 - x^2 - 16*x + 6, 1>,

<x^5 - 4*x^4 - 21*x^3 + 74*x^2 + 102*x - 296, 1>

]

0.3.3 Creation of Elements

Suppose M is a space of weight k modular symbols over a field F . A modular sym-
bol P (X,Y ){α, β} is input as M!<P(X,Y),[alpha,beta]>, where P (X,Y ) ∈ F [X,Y ] is
homogeneous of degree k − 2, and α, β ∈ P1(Q). Here is an example:
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Example H0E4

First create the space M =M4(Γ0(3);F7).

> F7 := GF(7);

> M := ModularSymbols(3,4,F7);

> R<X,Y> := PolynomialRing(F7,2);

Now we input (X2 − 2XY ){0, 1}.

> M!<X^2-2*X*Y,[Cusps()|0,1]>;

6*Y^2*{oo, 0}

Note that (X2 − 2XY ){0, 1} = 6Y 2{∞, 0} in M .
When k = 2, simply enter M!<1,[alpha,beta]>.

> M := ModularSymbols(11,2);

> M!<1,[Cusps()|0,Infinity()]>;

-1*{oo, 0}

> M![<1,[Cusps()|0,Infinity()]>, <1,[Cusps()|0,1/11]>];

-2*{oo, 0}

Any space M of modular symbols is finitely generated. One proof of this uses that every
modular symbol is a linear combination of Manin symbols. Let P1(Z/NZ) be the set of
pairs (u, v) ∈ Z/NZ×ZNZ such that GCD(u, v,N) = 1, where u and v are lifts of u and v
to Z. A Manin symbols 〈P (X,Y ), (u, v)〉 is a pair consisting of a homogeneous polynomial
P (X,Y ) ∈ F [X,Y ] of degree k − 2 and an element (u, v) ∈ P1(Z/NZ). The modular
symbol associated to 〈P (X,Y ), (u, v)〉 is constructed as follows. Choose lifts u, v of u, v

such that GCD(u, v) = 1. Then there is a matrix g =

(

w z
u v

)

in SL2(Z) whose lower

two entries are u and v. The modular symbol is then g(P (X,Y ){0,∞}). The intrinsic
ConvertFromManinSymbol computes the modular symbol attached to a Manin symbol.
Ever modular symbol can be written as a linear combination of Manin symbols using the
intrinsic ManinSymbol.

Example H0E5

In this example, we convert between Manin and modular symbols representations of a few elements
of a space of modular symbols of weight 4 over F5.

> F5 := GF(5);

> M := ModularSymbols(6,4,F5);

> R<X,Y> := PolynomialRing(F5,2);

> ConvertFromManinSymbol(M,<X^2+Y^2,[1,4]>);

(3*X^2 + 3*X*Y + 2*Y^2)*{-1/2, 0} + (X^2 + 4*X*Y + 4*Y^2)*{-1/3, 0} +

(X^2 + X*Y + 4*Y^2)*{1/3, 1/2}

> ManinSymbol(M.1-3*M.2);

[

<X^2, (0 1)>,

<2*X^2, (1 2)>
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]

Thus the element M.1-3*M.2 of M corresponds to the sum of Manin symbols 〈X2, (0, 1)〉 +
2〈X2, (1, 2)〉.

M ! x

The coercion of x into M . Here x can be either a modular symbol that lies in a
subspace of M , a 2-tuple that describes a modular symbol, a sequence of such 2-
tuples, or anything that can be coerced into VectorSpace(M). If x is a valid sequence
of such 2-tuples, then M!x is the sum of the coercions into M of the elements of the
sequence x.

ConvertFromManinSymbol(M, x)

The modular symbol associated to the 2-tuple x = 〈P (X,Y ), [u, v]〉, where
P (X,Y ) ∈ F [X,Y ] is homogeneous of degree k − 1, F is the base field of M ,
and [u, v] is a sequence of 2 integers that defines an element of P1(Z/NZ), where N
is the level of M .

ManinSymbol(x)

An expression for x in terms of Manin symbols, which are represented as 2-tuples
〈P (X,Y ), [u, v]〉.

Example H0E6

> M := ModularSymbols(14,2); M;

Full modular symbols space for Gamma_0(14) of weight 2 and dimension 5

over Rational Field

> Basis(M);

[

{oo, 0},

{-1/8, 0},

{-1/10, 0},

{-1/12, 0},

{-1/2, -3/7}

]

> M!<1,[1,0]>;

0

> M!<1,[0,1/11]>;

{-1/10, 0} + -1*{-1/12, 0}

> M![<1,[0,1/2]>, <-1,[0,1/7]>]; // sequences are added

{-1/8, 0} + -1*{-1/12, 0} + -1*{-1/2, -3/7}

> M!<1,[0,1/2]> - M!<1,[0,1/7]>;

{-1/8, 0} + -1*{-1/12, 0} + -1*{-1/2, -3/7}

> M!<1,[Cusps()|Infinity(),0]>; // Infinity() is in Cusps().

{oo, 0}
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We can also coerce sequences into the underlying vector space of M.

> VectorSpace(M);

Full Vector space of degree 5 over Rational Field

Mapping from: Full Vector space of degree 5 over Rational Field to

ModSym: M given by a rule [no inverse]

Mapping from: ModSym: M to Full Vector space of degree 5 over Rational

Field given by a rule [no inverse]

> Eltseq(M.3);

[ 0, 0, 1, 0, 0 ]

> M![ 0, 0, 1, 0, 0 ];

{-1/10, 0}

> M.3;

{-1/10, 0}

The “polynomial coefficients” of the modular symbols are homogeneous polynomials in 2 variables
of degree k − 2.
> M := ModularSymbols(1,12);

> Basis(M);

[

X^10*{0, oo},

X^8*Y^2*{0, oo},

X^9*Y*{0, oo}

]

> R<X,Y> := PolynomialRing(Rationals(),2);

> M!<X^9*Y,[Cusps()|0,Infinity()]>;

X^9*Y*{0, oo}

> M!<X^7*Y^3,[Cusps()|0,Infinity()]>;

-25/48*X^9*Y*{0, oo}

> Eltseq(M!<X*Y^9,[1/3,1/2]>);

[ -19171, -58050, -30970 ]

> M![1,2,3];

X^10*{0, oo} + 2*X^8*Y^2*{0, oo} + 3*X^9*Y*{0, oo}

> ManinSymbol(M![1,2,3]);

[

<X^10, (0 1)>,

<2*X^8*Y^2, (0 1)>,

<3*X^9*Y, (0 1)>

]

0.3.4 Dirichlet Characters

Let R be a ring. Then a Dirichlet character over R of modulus N is a homomorphism

ε : (Z/NZ)∗ → R∗,

where R∗ is the group of invertible elements of R. We extend ε to a set theoretic map on
the whole of Z by defining ε(x) = 0 if gcd(x,N) 6= 1. The conductor of ε is the smallest
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positive integerM such that the homomorphism (Z/NZ)∗ → R∗ factors through (Z/MZ)∗

via the natural map (Z/NZ)∗ → (Z/MZ)∗.
The following functions support computations involving Dirichlet characters.

DirichletGroup(N)

The group of Dirichlet characters modulo N with image in RationalField(). This
is a group of exponent at most 2.

DirichletGroup(N,R)

The group of Dirichlet characters modulo N with image in the ring R.

DirichletGroup(N,R,z,r)

The group of Dirichlet characters mod N with image in the order-r cyclic subgroup
of the ring R generated by the root of unity z. Here z must be an element of R of
exact order r. The reason r must be input is that, for certain rings, it is not possible
to determine the order of a general element.

Elements(G)

The Dirichlet characters in G.

KroneckerCharacter(D)

The Kronecker character n 7→ (D/n), where D is a fundamental discriminant or 1.
Thus Evaluate(KroneckerCharacter(D),n) equals KroneckerSymbol(D,n).

KroneckerCharacter(D, R)

The Kronecker character n 7→ (D/n) over the ring R.

Random(G)

A random element of G.

Ngens(G)

The number of generators of G.

AssignNames(~G, S)

Assign names to the generators of G.

Evaluate(x,n)

Evaluate x at the integer n.

IsEven(x)

True if and only if Evaluate(x,-1) is equal to 1. Note that in characteristic 0, the
space of modular forms of weight k and character x is zero if x is even and k is odd.

IsOdd(x)
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True if and only if Evaluate(x,-1) is equal to −1. Note that in characteristic 0,
the space of modular forms of weight k and character x is zero if x is odd and k is
even.

IsTrivial(x)

True if and only if x has order 1.

BaseExtend(G, R)

Base extension of G to R.

BaseExtend(G, R, z)

Base extension of G to R that identifies the distinguished root of unity of the base
ring of G with z.

x * y

The product of x and y. This is a Dirichlet character of modulus equal to the least
common multiple of the moduli of x and y. The base rings and chosen roots of unity
of the parents of x and y are equal.

x ^ n

The Dirichlet character x raised to the power of n.

Example H0E7

We begin by constructing the group of characters (Z/5Z)∗ → Q∗.

> G<a> := DirichletGroup(5); G; // The default base field is Q.

Group of Dirichlet characters of modulus 5 over Rational Field

> #G;

2

> [Evaluate(a,n) : n in [1..5]];

[ 1, -1, -1, 1, 0 ]

> Eltseq(a);

[ 2 ]

> a eq G![2];

true

> IsEven(a);

true

> IsOdd(a);

false

> IsTrivial(a);

false

Next we create a character by building it up “locally”.

> G1<a4> := DirichletGroup(4);

> Conductor(a4);

4

> G2<a5> := DirichletGroup(25);

> Conductor(a5);
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5

> eps := a4*a5;

> Modulus(eps);

100

> Conductor(eps);

20

> Evaluate(eps,7) eq Evaluate(a4,7)*Evaluate(a5,7);

true

Characters can be constructed over various fields.

> G<a> := DirichletGroup(7,GF(7));

> #G;

6

> Evaluate(a,2);

2

>

> G<a3,a5> := DirichletGroup(15,CyclotomicField(EulerPhi(15)));

> G;

Group of Dirichlet characters of modulus 15 over Cyclotomic Field of

order 8 and degree 4

> #G;

8

> Conductor(a3);

3

> Conductor(a5);

5

> Order(a5);

4

> Evaluate(a5,2);

zeta_8^2

If D is a fundamental discriminant, then KroneckerCharacter(D) is the quadratic Dirich-
let character corresponding to the quadratic field Q(

√
D). The following code verifies that

KroneckerCharacter and KroneckerSymbol agree in the case D = 209.

> chi := KroneckerCharacter(209);

> for n in [1..209] do

> assert Evaluate(chi,n) eq KroneckerSymbol(209,n);

> end for;

If E is an elliptic curve with newform fE , then the twist ED corresponds to fE twisted by this
character, as illustrated below.

> E := EllipticCurve(CremonaDatabase(),"11A");

> f := qEigenform(E,8); f;

q - 2*q^2 - q^3 + 2*q^4 + q^5 + 2*q^6 - 2*q^7 + O(q^8)

> chi := KroneckerCharacter(-7);

> qEigenform(QuadraticTwist(E,-7),8);

q - 2*q^2 + q^3 + 2*q^4 - q^5 - 2*q^6 + O(q^8)

> R<q> := Parent(f);
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> &+[Evaluate(chi,n)*Coefficient(f,n)*q^n : n in [1..7]] + O(q^8);

q - 2*q^2 + q^3 + 2*q^4 - q^5 - 2*q^6 + O(q^8)

0.4 Bases

Basis(M)

Basis for M .

IntegralBasis(M)

First suppose that M equals AmbientSpace(M). Then this intrinsic returns a basis
x1, . . . , xn forM such that Zx1+· · ·+Zxn is the Z-submodule ofM generated by all
modular symbols X i ·Y k−2−i{α, β} with i = 0, . . . , k−2 and α, β ∈ P1(Q). If M is
not AmbientSpace(M), then this intrinsic returns a Z-basis forM∩(Zx1+· · ·+Zxn),
where x1, . . . , xn is an integral basis for AmbientSpace(M). The base field ofM must
be Q.

Example H0E8

> M := ModularSymbols(1,12);

> Basis(M);

[

X^10*{0, oo},

X^8*Y^2*{0, oo},

X^9*Y*{0, oo}

]

> IntegralBasis(M);

[

1/48*X^9*Y*{0, oo},

1/14*X^8*Y^2*{0, oo},

X^10*{0, oo}

]

IntegralBasis(M) is a basis for the Z-module spanned by the following symbols:

> R<X,Y> := PolynomialRing(Rationals(),2);

> [M!<X^i*Y^(10-i),[Cusps()|0,Infinity()]> : i in [0..10]];

[

-X^10*{0, oo},

X^9*Y*{0, oo},

-X^8*Y^2*{0, oo},

-25/48*X^9*Y*{0, oo},

9/14*X^8*Y^2*{0, oo},

5/12*X^9*Y*{0, oo},

-9/14*X^8*Y^2*{0, oo},

-25/48*X^9*Y*{0, oo},

X^8*Y^2*{0, oo},
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X^9*Y*{0, oo},

X^10*{0, oo}

]

We can also compute an integral basis of a subspace.

> C := CuspidalSubspace(M);

> IntegralBasis(C);

[

1/48*X^9*Y*{0, oo},

1/14*X^8*Y^2*{0, oo}

]

In Remark 3 on page 69 of [Mer94], Merel says “it would be interesting to find a basis in terms
of Manin symbols” for the Z-module of Eisenstein symbols (see Section 0.8 for the definition of
EisensteinSubspace). Here are the first few examples in the case of level 1:

> M := ModularSymbols(1,12);

> E := EisensteinSubspace(M);

> IntegralBasis(E);

[

691*X^10*{0, oo} + 1620*X^8*Y^2*{0, oo}

]

> ManinSymbol(IntegralBasis(E)[1]);

[

<691*X^10, (0 1)>,

<1620*X^8*Y^2, (0 1)>

]

To more easily compute several examples, we define a function:

> function EisZ(k)

> E := EisensteinSubspace(ModularSymbols(1,k));

> B := IntegralBasis(E);

> return [ManinSymbol(z) : z in B];

> end function;

> EisZ(12);

[

[

<691*X^10, (0 1)>,

<1620*X^8*Y^2, (0 1)>

]

]

> EisZ(16);

[

[

<16380*X^12*Y^2, (0 1)>,

<3617*X^14, (0 1)>

]

]

> EisZ(18);



Ch. 0 MODULAR SYMBOLS 17

[

[

<43867*X^16, (0 1)>,

<270000*X^14*Y^2, (0 1)>

]

]

> EisZ(20);

[

[

<174611*X^18, (0 1)>,

<1349460*X^16*Y^2, (0 1)>

]

]

> EisZ(22);

[

[

<748125*X^18*Y^2, (0 1)>,

<77683*X^20, (0 1)>

]

]

Send me an email if you determine the basis in general. In each example above the coefficient of
Xk−2 is, up to sign, Numerator(Bernoulli(k)/k).

0.5 Associated Vector Space

The functions VectorSpace, DualVectorSpace, and Lattice return the underlying vector
space, dual vector space, and lattice associated to a space of modular symbols. A space of
modular symbols is represented internally as a subspace of a vector space, and a subspace
of the linear dual of the vector space. To carry along the subspace of the linear dual is
useful in many computations; one example is efficient computation of Hecke operators.
When the base field is Q, the lattice comes from the natural integral structure on modular
symbols.

VectorSpace(M)

The vector space V underlying M , the map V →M , and the map M → V .

DualVectorSpace(M)

The subspace of the linear dual of VectorSpace(AmbientSpace(M)) that is isomor-
phic to M as a module over the Hecke algebra.

Lattice(M)

The lattice generated by the integral modular symbols in the vector space represen-
tation of M . This is the lattice generated by all modular symbols X iY k−2−i{a, b}.
The base field of M must be RationalField().
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Example H0E9

> M := ModularSymbols(DirichletGroup(11).1,3); M;

Full modular symbols space of level 11, weight 3, character $.1, and

dimension 4 over Rational Field

> VectorSpace(M);

Full Vector space of degree 4 over Rational Field

Mapping from: Full Vector space of degree 4 over Rational Field to

ModSym: M given by a rule [no inverse]

Mapping from: ModSym: M to Full Vector space of degree 4 over Rational

Field given by a rule [no inverse]

> Basis(VectorSpace(CuspidalSubspace(M)));

[

( 0 1 0 -1),

( 0 0 1 -1)

]

> Basis(VectorSpace(EisensteinSubspace(M)));

[

( 1 0 -2/3 -1/3),

( 0 1 -5 -2)

]

> Lattice(CuspidalSubspace(M));

Lattice of rank 2 and degree 4

Basis:

( 0 1 -1 0)

( 0 1 1 -2)

Basis Denominator: 2

Mapping from: Lattice of rank 2 and degree 4 to Modular symbols space

of level 11, weight 3, character $.1, and dimension 2 over Rational

Field given by a rule [no inverse]

> Basis(Lattice(EisensteinSubspace(M)));

[

( 0 1/2 -5/2 -1),

( 3 -1/2 1/2 0)

]
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0.6 Degeneracy Maps

Consider an ambient space M1 of modular symbols of level N1, and suppose M2 is an
ambient space of modular symbols of level a multiple N2 of N1 whose weight equals the
weight of M1 and whose character is induced by the character of M1. Then for each
divisor d of N2/N1 there are natural maps αd : M1 → M2 and βd : M2 → M1 such that
βd ◦ αd is multiplication by dk−2 · [Γ0(N1) : Γ0(N2)], where k is the common weight of
M1 and M2. On cuspidal parts, the map βd is dual to the map f(q)→ f(qd) on modular
forms. Use the function DegeneracyMap to compute the maps αd and βd.

Given a space M of modular symbols and a positive integer N that is a multiple of
the level of M , the images of M under the degeneracy maps generate a modular symbols
space of level N . The constructor ModularSymbols(M,N) computes this space.

Let M be a space of modular symbols of level N , and let N ′ be a multiple of N . The
subspace

∑

d|N′

N

αd(M) ⊂Mk(N
′, ε)

is stable under the Hecke operators. Here is how to create this subspace using Magma:

> M := ModularSymbols(11,2); M;

Full modular symbols space for Gamma_0(11) of weight 2 and dimension 3

over Rational Field

> M33 := ModularSymbols(M,33); M33;

Modular symbols space for Gamma_0(33) of weight 2 and dimension 6 over

Rational Field

DegeneracyMap(M1, M2, d)

The degeneracy map M1 → M2 associated to d. Let Ni be the level of Mi for
i = 1, 2. Suppose that d is a divisor of either the numerator or denominator of the
rational number N1/N2, written in reduced form. If N1 | N2, then this intrinsic
returns αd : M1 → M2, or if N2 | N1, then this intrinsic returns βd : M1 → M2. It
is an error if neither divisibility holds.

DegeneracyMatrix(M1, M2, d)

The matrix of DegeneracyMap(M1,M2,d) with respect to Basis(M1) and Basis(M2).
Both IsAmbient(M1) and IsAmbient(M2) must be true.

ModularSymbols(M, N’)

The modular symbols space of level N ′ associated to M . Let N be the level of M .
If N | N ′, then this intrinsic returns the modular symbols space

∑

d|N′

N

αd(M).
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If N ′ | N , then this intrinsic returns the modular symbols space

∑

d| N

N′

βd(M).

In this latter case, if Conductor(DirichletCharacter(M)) does not divide N ′, then
the 0 space is returned.

M1 !! M2

The modular symbols subspace of M1 associated to M2. Let N1 be the level of
M1. If ModularSymbols(M2,N1) is defined, let M3 be this modular symbols space,
otherwise terminate with an error. If M3 is contained in M1, return M3, otherwise
terminate with an error.

Example H0E10

We compute degeneracy maps α2 and β2.

> M15 := ModularSymbols(15);

> M30 := ModularSymbols(30);

> alp_2 := DegeneracyMap(M15,M30,2);

> alp_2(M15.1);

2*{oo, 0} + -1*{-1/28, 0} + -1*{-1/2, -7/15}

> beta_2 := DegeneracyMap(M30,M15,2);

> beta_2(alp_2(M15.1));

3*{oo, 0}

> M15.1;

{oo, 0}

We can consider the space generated by the image of a space of modular symbols of level 11 in
spaces of higher level.

> X11 := ModularSymbols("11k2A");

> qEigenform(X11,6);

q - 2*q^2 - q^3 + 2*q^4 + q^5 + O(q^6)

> ModularSymbols(X11,33);

Modular symbols space for Gamma_0(33) of weight 2 and dimension 4 over

Rational Field

> X33 := ModularSymbols(X11,33);

> qExpansionBasis(X33,6);

[

q - 2*q^2 + 2*q^4 + q^5 + O(q^6),

q^3 + O(q^6)

]

> Factorization(CharacteristicPolynomial(HeckeOperator(X33,3)));

[

<x^2 + x + 3, 2>

]

> ModularDegree(X33);
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3

We can also construct the space generated by the images of X11 at higher level using the !!

operator.

> M44 := ModularSymbols(44,2);

> A := M44!!X11; A;

Modular symbols space for Gamma_0(44) of weight 2 and dimension 6 over

Rational Field

> X11!!A; // back to the original space

Modular symbols space for Gamma_0(11) of weight 2 and dimension 2 over

Rational Field

0.7 Decomposition

The functions Decomposition and NewformDecomposition express a space of modular
symbols as a direct sum of Hecke-stable subspaces.

In the intrinsics below, the Proof parameter affects the internal characteristic poly-
nomial computations. If Proof is set to false and this causes a characteristic poly-
nomial computation to fail, then the sum of the dimensions of the spaces returned by
Decomposition will be less than the dimension of M. Thus setting Proof equal to false

is usually safe.

Decomposition(M, bound : parameters)

Proof BoolElt Default : true

The decomposition of M with respect to the Hecke operators Tp with p coprime
to the level of M and p ≤ bound. If bound is too small, the constituents of the
decomposition are not guaranteed to be “irreducible”, in the sense that they can
not be decomposed further into kernels and images of Hecke operators Tp with p
prime to the level of M . When Decomposition is called, the result is cached, so
each successive call results in a possibly more refined decomposition.
Important Note: In some cases NewformDecomposition is significantly faster than
Decomposition.

NewformDecomposition(M : parameters)

Proof BoolElt Default : true

Unsorted decomposition of M into factors corresponding to the Galois conjugacy
classes of newforms of level some divisor of the level of M . We require that
IsCuspidal(M) is true.

AssociatedNewSpace(M)

The space of modular symbols corresponding to the Galois-conjugacy class of new-
forms associated toM . The level of the newforms is allowed to be a proper divisor of
the level ofM . The spaceM must have been created using NewformDecomposition.
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SortDecomposition(D)

Sort the sequence D of spaces of modular symbols with respect to the lt comparison
operator.

IsIrreducible(M)

True if and only if Decomposition(M) has cardinality 1.

M1 lt M2

The ordering determined as follows:

(1) This rule applies only if NewformDecomposition was used to construct both of
M1 andM2: If Level(AssociatedNewSpace(M1)) and Level(AssociatedNewSpace(M2))
are not equal then the Mi with larger associated level is first.

(2) The smaller dimension is first.

(3) The following applies when the weight is 2 and the character is trivial: Order
by Wq eigenvalues, starting with the smallest p | N , with the eigenvalue +1 being
less than the eigenvalue −1.

(4) Order by abs(trace(ap)), with p not dividing the level, and with positive trace
being smaller in the event that the two absolute values are equal.

Rule (3) is included so that our ordering extends the one used in (most of!) [Cre97].

Example H0E11

First, we compute the decomposition of the space of modular symbols of weight 2 and level 37.

> M := ModularSymbols(37,2); M;

Full modular symbols space for Gamma_0(37) of weight 2 and dimension 5

over Rational Field

> D := Decomposition(M,2); D;

[

Modular symbols space for Gamma_0(37) of weight 2 and dimension 1

over Rational Field,

Modular symbols space for Gamma_0(37) of weight 2 and dimension 2

over Rational Field,

Modular symbols space for Gamma_0(37) of weight 2 and dimension 2

over Rational Field

]

> IsIrreducible(D[2]);

true

> C := CuspidalSubspace(M); C;

Modular symbols space for Gamma_0(37) of weight 2 and dimension 4 over

Rational Field

> N := NewformDecomposition(C); N;

[

Modular symbols space for Gamma_0(37) of weight 2 and dimension 2

over Rational Field,

Modular symbols space for Gamma_0(37) of weight 2 and dimension 2
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over Rational Field

]

Next, we use NewformDecomposition to decompose a space having plentiful old subspaces.

> M := ModularSymbols(90,2); M;

Full modular symbols space for Gamma_0(90) of weight 2 and dimension

37 over Rational Field

> D := Decomposition(M,11); D;

[

Modular symbols space for Gamma_0(90) of weight 2 and dimension 11

over Rational Field,

Modular symbols space for Gamma_0(90) of weight 2 and dimension 4

over Rational Field,

Modular symbols space for Gamma_0(90) of weight 2 and dimension 2

over Rational Field,

Modular symbols space for Gamma_0(90) of weight 2 and dimension 2

over Rational Field,

Modular symbols space for Gamma_0(90) of weight 2 and dimension 4

over Rational Field,

Modular symbols space for Gamma_0(90) of weight 2 and dimension 8

over Rational Field,

Modular symbols space for Gamma_0(90) of weight 2 and dimension 6

over Rational Field

]

> C := CuspidalSubspace(M); C;

Modular symbols space for Gamma_0(90) of weight 2 and dimension 22

over Rational Field

> N := NewformDecomposition(C); N;

[

Modular symbols space for Gamma_0(90) of weight 2 and dimension 2

over Rational Field,

Modular symbols space for Gamma_0(90) of weight 2 and dimension 2

over Rational Field,

Modular symbols space for Gamma_0(90) of weight 2 and dimension 2

over Rational Field,

Modular symbols space for Gamma_0(90) of weight 2 and dimension 4

over Rational Field,

Modular symbols space for Gamma_0(90) of weight 2 and dimension 4

over Rational Field,

Modular symbols space for Gamma_0(90) of weight 2 and dimension 8

over Rational Field

]

The above decomposition uses all of the Hecke operator; it suggests that the decomposition D is
not as fine as possible. Indeed, D[7] breaks up further:

> Decomposition(D[7],11);

[

Modular symbols space for Gamma_0(90) of weight 2 and dimension 6
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over Rational Field

]

> Decomposition(D[7],19);

[

Modular symbols space for Gamma_0(90) of weight 2 and dimension 4

over Rational Field,

Modular symbols space for Gamma_0(90) of weight 2 and dimension 2

over Rational Field

]

The function AssociatedNewSpace allows us to see where each of these subspace comes from.
By definition they each arise by taking images under the degeneracy maps from a single Galois-
conjugacy class of newforms of some level dividing 90.

> [Level(AssociatedNewSpace(A)) : A in N];

[ 90, 90, 90, 45, 30, 15 ]

> A := N[4];

> qEigenform(AssociatedNewSpace(A),7);

q + q^2 - q^4 - q^5 + O(q^7)

> qExpansionBasis(A,7);

[

q - 2*q^4 - q^5 + O(q^7),

q^2 + q^4 + O(q^7)

]

0.8 Subspaces

The following functions compute the cuspidal, Eisenstein, and new subspaces, along with
the complement of a subspace.

CuspidalSubspace(M)

The cuspidal subspace of M . This is the kernel of BoundaryMap(M).

IsCuspidal(M)

True if and only if M is contained in the cuspidal subspace of the ambient space.

EisensteinSubspace(M)

The Eisenstein subspace ofM . This is the complement inM of the cuspidal subspace
of M .

IsEisenstein(M)

True if and only if M is contained in the Eisenstein subspace of the ambient space.

NewSubspace(M)

The new subspace of M . This is the intersection of NewSubspace(M,p) as p varies
over all prime divisors of the level of M . Note that M is required to be cuspidal.
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IsNew(M)

True if and only if M is contained in the new cuspidal subspace of the ambient
space.

NewSubspace(M, p)

The p-new subspace of M . This is the kernel of the degeneracy map from M to the
space of modular symbols of level equal to the level of M divided by p and character
the restriction of the character of M . If the character of M does not restrict, then
NewSubspace(M,p) is equal to M . Note that M is required to be cuspidal.

Kernel(I, M)

The kernel of I on M . Let Tp denote the pth Hecke operator (see Section 0.9).
This is the subspace of M obtained by intersecting the kernels of the operators
fn(Tpn

), where I is a sequence [〈p1, f1(x)〉, ..., 〈pn, fn(x)〉] of pairs consisting of a
prime number and a polynomial. Only primes pi which do not divide the level of M
are used.

Complement(M)

The space of modular symbols complementary to M in the ambient space of M .
Thus the ambient space of M is equal to the direct sum of M and Complement(M).

BoundaryMap(M)

A matrix that represents the boundary map from M to the vector space whose basis
consists of the weight k cusps. (Note: At present there is no intrinsic that lists these
cusps.)

Example H0E12

First we compute the cuspidal subspace of the space of modular symbols for Γ0(11).

> M := ModularSymbols(11,2); M;

Full modular symbols space for Gamma_0(11) of weight 2 and dimension 3

over Rational Field

> IsCuspidal(M);

false

> C := CuspidalSubspace(M); C;

Modular symbols space for Gamma_0(11) of weight 2 and dimension 2 over

Rational Field

> IsCuspidal(C);

true

Next we compute the Eisenstein subspace.

> IsEisenstein(C);

false

> E := EisensteinSubspace(M); E;

Modular symbols space for Gamma_0(11) of weight 2 and dimension 1 over
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Rational Field

> IsEisenstein(E);

true

> E + C eq M;

true

The Eisenstein subspace is the complement of the cuspidal subspace, and conversely.

> E eq Complement(C);

true

> C eq Complement(E);

true

Example H0E13

> M := ModularSymbols("37B"); M;

Modular symbols space for Gamma_0(37) of weight 2 and dimension 2 over

Rational Field

> BoundaryMap(M);

[0 0]

[0 0]

> A := AmbientSpace(M);

> BoundaryMap(A);

[ 0 0]

[ 0 0]

[ 0 0]

[ 0 0]

[ 1 -1]

Observe that the Eisenstein subspace of A is not in the kernel of the boundary map.

> Basis(VectorSpace(EisensteinSubspace(A)));

[

(0 0 0 1 3)

]
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0.9 Operators

Each space M of modular symbols comes equipped with a commuting family T1, T2, T3, . . .
of linear operators acting on it called the Hecke operators.

The Hecke operators are defined recursively, as follows. First, T1 = 1. When n = p is
prime,

Tp(x) =





(

p 0
0 1

)

+
∑

r mod p

(

1 r
0 p

)



x,

where the first matrix is omitted if p divides the level N ofM . Ifm and n are coprime, then
Tmn = TmTn. If p is a prime, r ≥ 2 is an integer, ε is the Dirichlet character associated
to M , and k is the weight of M , then

Tpr = TpTpr−1 − ε(p)pk−1Tpr−2 .

Example H0E14

In Magma, Hecke operators are represented as n×n-matrices, acting from the right, with respect
to the basis Basis(M). For example

> M := ModularSymbols(12);

> T2 := HeckeOperator(M,2);

> M.1;

{oo, 0}

> T2;

[ 2 0 -1 0 0]

[ 2 0 -1 0 0]

[ 0 0 1 -2 -2]

[ 0 -1 1 -1 -2]

[ 0 1 -1 1 2]

> M.1*T2;

2*{oo, 0} + -1*{-1/10, 0}

HeckeOperator(M, n)

Compute a matrix representing the nth Hecke operator Tn with respect to Basis(M).

HeckePolynomial(M, n)

Compute the characteristic polynomial of the Hecke operator Tn. When n is prime,
the Deligne bound on the sizes of Hecke eigenvalues is used, so HeckePolynomial is
frequently much faster than CharacteristicPolynomial(HeckeOperator(M,n)).

IntegralHeckeOperator(M, n)

A matrix representing the nth Hecke operator with respect to Basis(Lattice(M)).

DualHeckeOperator(M, n)
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Compute a matrix representing the Hecke operator Tn on the dual vector space
representation ofM . This function is much more efficient than HeckeOperator(M,n)
when the dimension ofM is small relative to the dimension of the AmbientSpace(M).
Note that DualHeckeOperator(M,n) is not guaranteed to equal the transpose of
HeckeOperator(M,n) because DualHeckeOperator(M,n) is computed with respect
to Basis(DualVectorSpace(M)).

AtkinLehner(M, q)

A matrix representing the qth Atkin-Lehner involution Wq on M , when it is defined.
The involution Wq is defined when M has trivial character and even weight. When
possible, the Atkin-Lehner map is normalized so that it is an involution; such nor-
malization may not be possible when k > 2 and the characteristic of the base field
of M divides q.

To each divisor q of N such that gcd(q,N/q) = 1 there is an Atkin-Lehner
involution Wq on M , which is defined as follows. Using the Euclidean algorithm,

choose integers x, y, z, w such that qxw − (N/q)yz = 1; let g =

(

dx y
Nz qw

)

and

define
Wq(x) = g(x)/q

k−2

2 .

For example, when q = N we have g =

(

0 −1
N 0

)

.

DualAtkinLehner(M, q)

The action of the Atkin-Lehner involution on the dual representation of M , when
it is defined.

StarInvolution(M)

The conjugation involution ∗ on M that sends the modular symbol X iY j{u, v} to
(−1)jXiY j{−u,−v}.

DualStarInvolution(M)

The conjugation involution ∗ on the dual representation of M (see the documenta-
tion for StarInvolution.)

ThetaOperator(M1, M2)

Multiplication by XpY −XY p, which is a possible analogue of the θ-operator. (On
mod p modular forms, the θ-operator is the map given by f 7→ q df

dq .) Both M1 and
M2 must be spaces of modular symbols over a field of positive characteristic p; they
must have the same level and character, and the weight of M2 must equal the weight
of M1 plus p+ 1.

Example H0E15

> M := ModularSymbols(11,4,+1); M;
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Full modular symbols space for Gamma_0(11) of weight 4 and dimension 4

over Rational Field

> HeckeOperator(M,2);

[ 9 0 2/5 -2/5]

[ 0 5 9/5 11/5]

[ 0 5 7/5 13/5]

[ 0 0 22/5 23/5]

The entries of T2 are not guaranteed to be integers because Basis(M) is just a basis of a Q-vector
space. The entries will be integers if we compute T2 with respect to an integral basis.

> IntegralHeckeOperator(M,2);

[ 0 2 0 0]

[ 1 2 0 0]

[-5 6 9 0]

[ 2 0 0 9]

The matrix for the Hecke operator on the dual of M is the transpose of T2. However, the
chosen basis for the cuspidal subspace of the dual of M need not satisfy any compatibility with
CuspidalSubspace(M).

> DualHeckeOperator(M,2);

[ 9 0 0 0]

[ 0 5 5 0]

[ 2/5 9/5 7/5 22/5]

[-2/5 11/5 13/5 23/5]

> S := CuspidalSubspace(M);

> HeckeOperator(S,2);

[ 5 -13/5]

[ 5 -3]

> DualHeckeOperator(S,2);

[-3/4 1/8]

[-1/2 11/4]

> // NOT the transpose!

We can also compute the Atkin-Lehner and the ∗-involution. The ∗-involution is the identity
because we are working in the +1-quotient, which is the largest quotient of ModularSymbols(11,4)
where ∗ acts as +1.

> AtkinLehner(S,11);

[1 0]

[0 1]

> StarInvolution(S);

[1 0]

[0 1]

On the −1 quotient the Atkin-Lehner involution is the same, but ∗ acts as −1:

> M := ModularSymbols(11,4,-1); M;

Full modular symbols space for Gamma_0(11) of weight 4 and dimension 2

over Rational Field
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> S := CuspidalSubspace(M);

> AtkinLehner(S,11);

[1 0]

[0 1]

> StarInvolution(S);

[-1 0]

[ 0 -1]

Example H0E16

We compute an example of our analogue of the θ-operator on modular symbols.

> N := 11; p := 3;

> k1 := 2; k2 := k1 + (p+1);

> M1 := ModularSymbols(11,k1,GF(p));

> M2 := ModularSymbols(11,k2,GF(p));

> theta := ThetaOperator(M1,M2); theta;

Mapping from: ModSym: M1 to ModSym: M2 given by a rule [no inverse]

Now that we have computed theta, we can apply it to one of the modular symbols corresponding
to the newform in S2(Γ0(11)).

> D := Decomposition(M1,2);

> f := qEigenform(D[2],10); f;

q + q^2 + 2*q^3 + 2*q^4 + q^5 + 2*q^6 + q^7 + q^9 + O(q^10)

> x := D[2].1;

> y := theta(x); y;

(X^4 + X*Y^3)*{-1/7, 0} + (X^4 + X^3*Y + X*Y^3 + Y^4)*{-1/7, 0} + (X^4

+ 2*X^3*Y + 2*X*Y^3 + Y^4)*{-1/5, 0} + Y^4*{oo, 0}

Finally, we verify for n < 10 that the nth Hecke eigenvalue of y = θ(x) equals n · an(f), where f
is as above.

> [y*HeckeOperator(M2,n) - n*Coefficient(f,n)*y : n in [1..9]];

[

0,

0,

0,

0,

0,

0,

0,

0,

0

]
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0.10 The Hecke Algebra

HeckeBound(M)

A positive integer n such that the Hecke operators T1, . . . , Tn generate the Hecke
algebra as a Z-module. When the character is trivial, the default bound is (k/12) ·
[SL2(Z) : Γ0(N)]. That this suffices follows from [Stu87], as is explained in [AS].
When the character of M is nontrivial, the default bound is twice the above bound;
however, it is not known that this bound is large enough in all cases in which the
character is nontrivial, so one may wish to increase the bound using SetHeckeBound.

SetHeckeBound(M, n)

Many computations require a bound n such that T1, . . . , Tn generate the Hecke
algebra as a Z-module. This command allows you to set the bound that is used
internally. Setting it too low can result in functions quickly producing incorrect
results.

HeckeAlgebra(M : Bound)

The Hecke algebra associated to M . This is an algebra TQ over Q, such that
Generators(TQ) is a set that generates the ring Z[T1, T2, T3, . . .], as a Z-module. If
the optional integer parameter Bound is set, then HeckeAlgebra only computes the
algebra generated by those Tn, with n ≤ Bound.

DiscriminantOfHeckeAlgebra(M : Bound)

The discriminant of the Hecke algebra associated to M . If the optional parameter
Bound is set, then the discriminant of the algebra generated by only those Tn, with
n ≤ Bound, is computed instead.

HeckeEigenvalueRing(M : parameters)

Bound RngIntElt Default : −1

The order generated by the Fourier coefficients of one of the q-expansions of a new-
form corresponding toM , along with a map from the ring containing the coefficients
of qExpansion(A) to the order. If the optional parameter Bound is set, then the
order generated only by those an, with n ≤ Bound, is computed.

HeckeEigenvalueField(M)

The number field generated by the Fourier coefficients of one of the q-expansions
of a newform corresponding to M , along with a map from the ring containing the
coefficients of qExpansion(M) to the number field. We require that M be defined
over Q.

Example H0E17

In this example, we compute the discriminant of the Hecke algebra of prime level 389.

> M := ModularSymbols(389,2,+1);

> C := CuspidalSubspace(M);
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> DiscriminantOfHeckeAlgebra(C);

62967005472006188288017473632139259549820493155023510831104000000

> Factorization($1);

[ <2, 53>, <3, 4>, <5, 6>, <31, 2>, <37, 1>, <389, 1>, <3881, 1>,

<215517113148241, 1>, <477439237737571441, 1> ]

The prime 389 is the only prime p < 10000 such that p divides the discriminant of the Hecke
algebra associated to S2(Γ0(p)). It is an open problem to decide whether or not there are any
other such primes. Are there infinitely many?

0.11 The Intersection Pairing

Magma can compute the intersection pairing

H1(X0(N),Q)×H1(X0(N),Q)→ Q

on the homology of the modular curve X0(N). The algorithm that we implemented is
essentially the one given in [Mer93]. (Warning: There is a typo in Proposition 4 of [Mer93];
Wi should be replaced by W εi

i .)

IntersectionPairing(x, y)

The intersection pairing of the homology classes corresponding to the weight-2 cus-
pidal modular symbols x and y. The symbols x and y must have the same parent,
which must have trivial character and not be a +1 or −1 quotient.

Example H0E18

In this example, we illustrate several basic properties of the intersection pairing on H1(X0(37),Z).
First, let H37 be the space of modular symbols that corresponds to H1(X0(37),Z), and compute
a basis for H37.

> M37 := ModularSymbols(37,2);

> H37 := CuspidalSubspace(M37);

> Z := IntegralBasis(H37); Z;

[

{-1/29, 0},

{-1/22, 0},

{-1/12, 0},

{-1/18, 0}

]

Now we compute some intersection numbers.

> IntersectionPairing(Z[1],Z[2]);

-1

> IntersectionPairing(Z[3],Z[4]);

0
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The intersection pairing is perfect and skew-symmetric, so the matrix that defines it is skew-
symmetric and has determinant ±1 (in fact, it has determinant +1).

> A := MatrixAlgebra(RationalField(),4);

> I := A![IntersectionPairing(x,y) : x in Z, y in Z]; I;

[ 0 1 0 1]

[-1 0 1 1]

[ 0 -1 0 0]

[-1 -1 0 0]

> I + Transpose(I) eq 0;

true

> Determinant(I);

1

The Hecke operators are compatible with the intersection pairing in the sense that (Tnx, y) =
(x, Tny).

> T2 := HeckeOperator(M37,2);

> IntersectionPairing(Z[1]*T2,Z[2]);

1

> IntersectionPairing(Z[1],Z[2]*T2);

1

It is note the case (Tnx, Tny) = (x, y) for all n, x, and y.

> IntersectionPairing(Z[1]*T2,Z[2]*T2);

-2

The existence of the intersection pairing implies that H1(X0(N),Z) is isomorphic, as a module
over the Hecke algebra, to its linear dual Hom(H1(X0(N),Z),Z).

0.12 q-Expansions

The following functions should only be called on modular symbols spaces that are cuspidal.
For q-expansions of Eisenstein series, use the modular forms functions instead (see the
example below).

qEigenform(M, prec)

qEigenform(M)

PowerSeries(M, prec)

PowerSeries(M)

The q-expansion of one of the Galois-conjugate newforms associated to the irre-
ducible cuspidal space M of modular symbols, computed to absolute precision prec

(which defaults to the highest precision computed in previous calls to this intrinsic,
or 8 if none have been computed). The coefficients of the q-expansion lie in a quo-
tient of a polynomial extension of the base field of M . In most cases, it is necessary
for M to have been defined using NewformDecomposition.
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qExpansionBasis(M, prec : parameters)

Al MonStgElt Default : ′′Newform′′

The reduced row-echelon basis of q-expansions for the space of modular forms as-
sociated to M , where K is the base field of M . The absolute precision of the
q-expansions is prec.

The optional parameter Al can take the values "Newform" and "Universal".
The default is "Newform", which computes a basis of q-expansions by finding a
decomposition of M into subspaces corresponding to newforms, computing their
q-expansions, and then taking all of their images under the degeneracy maps. If Al
:= "Universal" then the algorithm of Section 4.3 of [Mer94] is used. This latter
algorithm does not require computing a newform decomposition of M , but requires
computing the action of many more Hecke operators. Consequently, in practice, our
implementation of Merel’s algorithm is usually less efficient than our implementation
of the newform algorithm.

qIntegralBasis(M, prec : parameters: Al)

Al MonStgElt Default : ′′Newform′′

The reduced integral basis of q-expansions for the space of modular forms associ-
ated to M , computed to absolute precision prec. The base field of M must be
RationalField().

SystemOfEigenvalues(M, prec)

The sequence of Hecke eigenvalues [a2, a3, a5, a7, . . . , ap] attached to M , where p is
the largest prime less than or equal to prec. Let K be the base field of M . Then
the a` either lie in K or a quotient of K[x]. We assume that M corresponds to a
single Galois-conjugacy class of newforms.

Example H0E19

First we compute the a q-basis and a representative newform for the two-dimensional space
S2(Γ0(23)). We work in the +1 quotient of modular symbols since, for the purpose of computing
q-expansions, nothing is lost and many algorithms are more efficient.

> M := CuspidalSubspace(ModularSymbols(23,2, +1));

> qExpansionBasis(M);

[

q - q^3 - q^4 - 2*q^6 + 2*q^7 + O(q^8),

q^2 - 2*q^3 - q^4 + 2*q^5 + q^6 + 2*q^7 + O(q^8)

]

> f := qEigenform(M,6); f;

q + a*q^2 + (-2*a - 1)*q^3 + (-a - 1)*q^4 + 2*a*q^5 + O(q^6)

> Parent(f);

Power series ring in q over Univariate Quotient Polynomial Algebra

in a over Rational Field with modulus a^2 + a - 1

> PowerSeries(M);

q + a*q^2 + (-2*a - 1)*q^3 + (-a - 1)*q^4 + 2*a*q^5 + (a - 2)*q^6 +
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(2*a + 2)*q^7 + O(q^8)

> SystemOfEigenvalues(M, 7);

[

a,

-2*a - 1,

2*a,

2*a + 2

]

Next we compare an integral and rational basis of q-expansions for S2(Γ0(65)), computed using
modular symbols.

> S := CuspidalSubspace(ModularSymbols(65,2,+1));

> qExpansionBasis(S);

[

q + 1/3*q^6 + 1/3*q^7 + O(q^8),

q^2 - 1/3*q^6 + 2/3*q^7 + O(q^8),

q^3 - 4/3*q^6 + 2/3*q^7 + O(q^8),

q^4 - 1/3*q^6 + 5/3*q^7 + O(q^8),

q^5 + 5/3*q^6 + 2/3*q^7 + O(q^8)

]

> qIntegralBasis(S);

[

q + q^5 + 2*q^6 + q^7 + O(q^8),

q^2 + 2*q^5 + 3*q^6 + 2*q^7 + O(q^8),

q^3 + 2*q^5 + 2*q^6 + 2*q^7 + O(q^8),

q^4 + 2*q^5 + 3*q^6 + 3*q^7 + O(q^8),

3*q^5 + 5*q^6 + 2*q^7 + O(q^8)

]

If you’re interested in q-expansions of Eisenstein series, see the chapter on modular forms. For
example:

> E := EisensteinSubspace(ModularForms(65,2));

> Basis(E);

[

1 + O(q^8),

q + 3*q^2 + 4*q^3 + 7*q^4 + 12*q^6 + 8*q^7 + O(q^8),

q^5 + O(q^8)

]
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0.13 Special Values of L-functions

Let M be an irreducible space of cuspidal modular symbols defined over Q, irreducible
in the sense that M corresponds to a single Galois-conjugacy class of cuspidal newforms.
Such an M can be computed using NewformDecomposition. Let f (1), . . . , f (d) be the

Gal(Q/Q)-conjugate newforms that correspond to M , and write f (d) =
∑∞

n=1 a
(d)
n qn. By

a theorem of Hecke, the Dirichlet series

L(f (i), s) =
∞
∑

n=1

a
(i)
n

ns

extends (uniquely) to a holomorphic function on the whole complex plane. Of particular
interest is the special value

L(M, j) = L(f (1), j) · · ·L(f (d), j),

for any j ∈ {1, 2, . . . , k − 1}.
In this section we describe how to approximate the complex numbers L(M, j) in

Magma. If you are interested in computing individual special values L(f (i), j), then you
should use the modular forms package instead of the modular symbols package for this.

The variable prec below refers to the number of terms of the q-expansion of each f (i)

that are used in the computation, and not to the number of decimals of the answer that
are correct. Thus, for example, to get a heuristic idea of the quality of an answer, you can
increase prec, make another call to LSeries, and observe the difference between the two
answers. If the difference is “small”, then the approximation is probably “good”.

LSeries(M, j, prec)

The special value L(M, j), where j is an integer that lies in the critical strip, so
1 ≤ j ≤ k − 1 with k the weight of M . Here M is a space of modular symbols
with sign 0, and prec is a positive integer which specifies the numbers of terms of
q-expansions to use in the computation.

LSeriesLeadingCoefficient(M, j, prec)

The leading coefficient of Taylor expansion about the critical integer j and order of
vanishing of L(M, s) at s = 1. Thus if the series expansion of L(M, s) about s = 1
is

L(M, s) = ar(s− 1)r + ar+1(s− 1)r+1 + ar+2(s− 1)r+2 + · · · ,

then the leading coefficient of L(M, s) is ar and the order of vanishing is r.

RealVolume(M, prec)

The volume of AM (R), which is defined as follows. Let S ⊂ C[[q]] be the space
of cusp forms associated to M . Choose a basis f1, . . . , fd for the free Z-module
S ∩ Z[[q]]; one can prove that f1, . . . , fd is also a basis for S. There is a period
map Φ from integral cuspidal modular symbols H to Cd that sends a modular
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symbol x ∈ H to the d-tuple of integrals (〈f1, x〉, . . . , 〈fd, x〉) ∈ Cd. The cokernel
of Φ is isomorphic to AM (C). Moreover, the standard measure on the Euclidean
space Cd induces a measure on AM (R). It is with respect to this measure that we
compute the volume. For more details, see Section 3.12.16 of [Ste00].

MinusVolume(M, prec)

The volume of the subgroup of AM (C) on which complex conjugation acts as −1.

LRatio(M, j : parameters)

Bound RngIntElt Default : −1

The rational number
L(A, j) · (j − 1)!

(2π)j−1 · Ω,

where j is a “critical integer”, so 1 ≤ j ≤ k − 1, and Ω is RealVolume(M) when j is
odd and MinusVolume(M) when j is even. If the optional parameter Bound is set,
then LRatio is only a divisibility upper bound on the above rational number. If
Sign(M) is not 0, then LRatio(M,j) is only correct up to a power of 2.

LRatioOddPart(M, j)

The odd part of the rational number LRatio(M,j). Hopefully, computing
LRatioOddPart(M,j) takes less time than finding the odd part of LRatio(M,j).

Example H0E20

> M := ModularSymbols(11,2);

> C := CuspidalSubspace(M);

> LSeries(C,1,100);

0.2538418608559106843377589233

> A := ModularSymbols("65B"); A; // <--> dimension two abelian variety

Modular symbols space of level 65, weight 2, and dimension 4

> LSeries(A,1,100);

0.9122515886981898410935140211 + 0.E-29*i

0.13.1 Winding Elements

Let Mk(N) be a space of modular symbols over Q. For i = 1, . . . , k, the ith winding
element

ei = Xi−1Y k−2−(i−1){0,∞} ∈Mk(N)

is of importance for the computation of special values. For any modular form f ∈ Sk(N)
and homogeneous polynomial P (X,Y ) of degree k − 2, let

〈f, P (X,Y ){0,∞}〉 = −2πi ·

∫ i∞

0

f(z)P (z, 1)dz.
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Fix a newform f ∈ Sk(N) corresponding to a space M of modular symbols, and let j be
a integer in {0, 1, . . . , k − 1}. The winding element is significant because

L(f, j) =
(2π)j−1

ij+1(j − 1)!
· 〈f,Xj−1Y k−2−(j−1){0,∞}〉.

Moreover, the submodule that is generated by the winding element is used in the formula
for a canonical rational part of the number L(M, j) (see LRatio, above).

WindingElement(M)

The winding element Y k−2{0,∞}.

WindingElement(M, i)

The winding element X i−1Y k−2−(i−1){0,∞}.

TwistedWindingElement(M, i, eps)

The element
∑

a∈(Z/mZ)∗ ε(a)X
i−1Y k−2−(i−1){0, a

m}.

WindingLattice(M, j : parameters)

Bound RngIntElt Default : −1

The image under RationalMapping(M) of the lattice generated by the images of the
jth winding element under all Hecke operators Tn. If M is the ambient space, then
the image under RationalMapping(M) is not taken.

WindingSubmodule(M, j : parameters)

Bound RngIntElt Default : −1

The image under RationalMapping(M) of the vector space generated by all images
of WindingElement(M,j) under all Hecke operators Tn. If M is the ambient space,
then the image under the rational period mapping is not taken.

TwistedWindingSubmodule(M, j, eps)

The Hecke submodule of the vector space Φ(M) generated by the image of the jth
ε-twisted modular winding element, where Φ is RationalMapping(M). This module
is useful, for example, because in characteristic 0, if M is new of weight 2, has
sign +1 or −1, and corresponds to a collection {fi} of Galois-conjugate newforms,
then the dimension of the twisted winding submodule equals the cardinality of the
subset of fi such that L(fi, eps, 1) 6= 0.
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0.14 The Associated Complex Torus

Let M be a space of cuspidal modular symbols, which is the kernel of an ideal in the
Hecke algebra. When M has weight 2 there is an abelian variety AM attached to M ; more
generally, there is a complex torus AM (C) attached to M . The associated complex torus
AM (C) is constructed as follows. Let S be the space of modular forms corresponding toM .
The integration pairing gives rise to a natural map M → Hom(S,C), and the cokernel of
this map is AM (C).

SubgroupOfTorus(M, x)

The cyclic subgroup of the complex torus attached to M that is generated by the
image under the period map of the modular symbol x.

SubgroupOfTorus(M, s)

An abelian group that is isomorphic to the finite group generated by the sequence of
images π(s[i]) in the complex torus attached to M , where π is PeriodMapping(M).

Example H0E21

The cuspidal subgroup of J0(N) is the subgroup generated by the degree 0 divisors on X0(N) of
the form (α) − (β), where α and β are cusps. The following examples illustrate how to use the
above functions to compute the cuspidal subgroup, as an abstract abelian group.
The modular symbols approach has the advantage that it is essentially no more complicated for N
highly composite than for N prime. However, it is only applicable when the corresponding space
of modular symbols can be computed in a reasonable amount of time, which at present means
that N should have less than 5 decimal digits. There are other methods which may be much more
efficient in special cases. For example, when p is prime Andrew Ogg showed that the cuspidal
subgroup of J0(p) is cyclic of order equal to the numerator of (p−1)/12. More generally, he gave a
simple formula for the order of the cuspidal subgroup when N = pq is the product of two primes.
See also papers of Ligozat.

> M := ModularSymbols(20); M;

Full Modular symbols space of level 20, weight 2, and dimension 7

> e := M ! <1, [Cusps()|0,Infinity()] >; // the path from 0 to infinity

> e;

-1*{oo, 0}

> J0of20 := CuspidalSubspace(M);

> A := SubgroupOfTorus(J0of20, e); A;

Abelian Group isomorphic to Z/6

Defined on 1 generator

Relations:

6*A.1 = 0

> // Next, the subgroup generated by all cusps

> A := SubgroupOfTorus(J0of20, IntegralBasis(M)); A;

Abelian Group isomorphic to Z/6

Defined on 1 generator

Relations:

6*A.1 = 0
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> // Let’s do another example.

> M := ModularSymbols(100);

> J0of100 := CuspidalSubspace(M);

> A := SubgroupOfTorus(J0of100, IntegralBasis(M)); A;

Abelian Group isomorphic to Z/6 + Z/30 + Z/30 + Z/30 + Z/30

Defined on 5 generators

Relations:

6*A.1 = 0

30*A.2 = 0

30*A.3 = 0

30*A.4 = 0

30*A.5 = 0

> M := ModularSymbols(77);

> J0of77 := CuspidalSubspace(M);

> A := SubgroupOfTorus(J0of77, IntegralBasis(M)); A;

Abelian Group isomorphic to Z/10 + Z/60

Defined on 2 generators

Relations:

10*A.1 = 0

60*A.2 = 0

> M := ModularSymbols(97);

> A := SubgroupOfTorus(CuspidalSubspace(M), IntegralBasis(M)); A;

Abelian Group isomorphic to Z/8

Defined on 1 generator

Relations:

8*A.1 = 0

> Numerator((97-1)/12);

8

Example H0E22

The following code creates a file that contains a table which lists, for each integer N in some
range, the abstract group structure of the subgroup of J0(N) = Jac(X0(N)) generated by the
cusps (α)− (∞), with α ∈ Q ∪ {∞}.

> function CuspidalSubgroup(N)

> M := ModularSymbols(N);

> J := CuspidalSubspace(M);

> G := SubgroupOfTorus(J,IntegralBasis(M));

> DisownChildren(M);

> return G;

> end function;

> // Test the function

> CuspidalSubgroup(65);

Abelian Group isomorphic to Z/2 + Z/84

Defined on 2 generators

Relations:

2*$.1 = 0
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84*$.2 = 0

> procedure CuspidalTable(start, stop)

> fname := Sprintf("cuspidal_subgroup_%o-%o.m", start, stop);

> file := Open(fname,"w");

> for N in [start..stop] do

> G := Invariants(CuspidalSubgroup(N));

> fprintf file, "C[%o] := \t%o;\n\n", N, G;

> printf "C[%o] := \t%o;\n\n", N, G;

> Flush(file);

> end for;

> end procedure;

ModularKernel(M)

The kernel of the modular isogeny. Let T be the complex torus attached to M .
Then the modular isogeny is the natural map from the dual of T into T induced by
autoduality of CuspidalSubspace(AmbientSpace(M)).

CongruenceGroup(M : parameters)

Bound RngIntElt Default : −1

The congruence group of the space of cusp forms corresponding to the space of
cuspidal modular symbols M . Let S = Sk(Γ0(N),Z), let V be the sub Z-module
corresponding to M , and W be its orthogonal complement. Then the congruence
group is S/(V +W ). This group encodes information about congruences between
forms in V and forms in the complement of V .

The optional parameter Bound is a positive integer b such that the q-expansions
of cusp forms are computed to absolute precision b. If the bound is too small, then
CongruenceGroup will give only an upper bound on the correct answer. The default
is HeckeBound(M) + 1, which gives a provably correct answer.

IntersectionGroup(M1, M2)

An abelian group G that encodes information about the intersection of the complex
tori corresponding to M1 and M2. We require that M1 and M2 lie in a common
ambient space. When the IntersectionGroup(M1,M2) is finite, it is isomorphic to
AM1

(C) ∩AM2
(C).

IntersectionGroup(S)

An abelian group G that encodes information about the intersection of the collection
of complex tori corresponding to the sequence S of spaces of modular symbols.

Example H0E23

In this example, we investigate a 2-dimensional abelian variety B, which is a quotient of J0(43).
The purpose of this example is to show how numerical computation with modular symbols suggests
interesting arithmetic questions about familiar abelian varieties. In the following example, we find
that the conjecture of Birch and Swinnerton-Dyer (plus the Manin c = 1 conjecture) implies that
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the first nontrivial Shafarevich-Tate group of an (optimal) modular abelian variety has order
TWO. Thus the surprising existence of an abelian varieties with non-square order could have
been (but was not) hinted at long ago by somebody playing around with a modular symbols
package (in fact, it was discovered by B. Poonen and M. Stoll [PS99] while they were designing
and implementing algorithms for computing with Jacobians of genus-two curves).

> M43 := ModularSymbols(43,2); // Level 43, weight 2.

> H1 := CuspidalSubspace(M43); // H_1(X_0(43),Q)

> D := NewformDecomposition(H1); // factors corresponding to newforms

> A,B := Explode(D);

> A; // The homology of the elliptic curve "43A"

Modular symbols space of level 43, weight 2, and dimension 2

> B; // The homology of the 2-dimensional abelian variety "43B"

Modular symbols space of level 43, weight 2, and dimension 4

> LRatio(B,1); // L(B,1)/Omega_B

2/7

The Birch and Swinnerton-Dyer conjecture predicts that the Shafarevich-Tate group of B has
order as given by the formula for ShaAn in the code below. To compute this value, it remains to
compute #B(Q) and the Tamagawa number c43.

> T := TorsionBound(B,11); T; // #B(Q) divides this number

7

> // Compute the subgroup of B(Q) generated by (0)-(oo).

> C := SubgroupOfTorus(B,WindingElement(M43)); C;

Abelian Group isomorphic to Z/7

Defined on 1 generator

Relations:

7*C.1 = 0

> TamagawaNumber(B,43);

7

> ShaAn := LRatio(B,1)*TorsionBound(B,11)^2/TamagawaNumber(B,43);

ShaAn is the Birch and Swinnerton-Dyer conjectural order of the Shafarevich-Tate group of B,
under the assumption that the Manin constant of B is 1.

> ShaAn;

2

One of the Galois conjugate newforms associated to B is given below.

> qEigenform(B,12);

q + a*q^2 - a*q^3 + (-a + 2)*q^5 - 2*q^6 + (a - 2)*q^7 - 2*a*q^8 - q^9

+ (2*a - 2)*q^10 + (2*a - 1)*q^11 + O(q^12)

> BaseRing(Parent(qEigenform(B,12)));

Univariate Quotient Polynomial Algebra in a over Rational Field

with modulus a^2 - 2

> qIntegralBasis(B,12);

[

q + 2*q^5 - 2*q^6 - 2*q^7 - q^9 - 2*q^10 - q^11 + O(q^12),

q^2 - q^3 - q^5 + q^7 - 2*q^8 + 2*q^10 + 2*q^11 + O(q^12)
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]

By integrating homology against the differentials corresponding to the two modular forms above,
we obtain a lattice that defines the complex torus AB(C):

> Periods(B,97);

[

(-0.2259499583067642118739519224 -

1.766644676299599532273333140*i

0.5250281159132219433729491648 +

0.8066018577029307230283142371*i),

(0.5981563162241222986475767220 -

1.920085638612119493276485632*i

0.8241062742261960348649172082 -

0.1534409622571770568748354995*i),

(-0.8241062745308865105215286445 -

0.1534409623125199610031524920*i

-0.2990781583129740914919680434 -

0.9600428199601077799031497367*i),

(-0.5981563162241222986475767220 -

1.920085638612119493276485632*i

-0.8241062742261960348649172083 -

0.1534409622571770568748354995*i)

]

Finally, it is tempting to ask whether or not the (conjectural) two-torsion element of the
Shafarevich-Tate group of B suggested above is “visible” in the sense that it is “explained by
a jump in the rank of the Mordell-Weil group of A” (see [CM00]). The following computation
suggests, but does not prove, that this is the case.

> G := MordellWeilGroup(EllipticCurve(A)); G;

Abelian Group isomorphic to Z

Defined on 1 generator (free)

> IntersectionGroup(A,B);

Abelian Group isomorphic to Z/2 + Z/2

Defined on 2 generators

Relations:

2*$.1 = 0

2*$.2 = 0

0.14.1 The Period Map

Let M be a space of modular symbols the corresponds to a Galois-conjugacy class of
newforms. The period map attached to M is a linear map

AmbientSpace(M)→ Cd,

where d is the dimension of the space of modular forms associated to M . The cokernel
of the period map is a complex torus AM (C). The terminology “period mapping” comes
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from the fact that there are (often?) mereomorphic functions on Cd whose periods are the
image of the integral cuspidal modular symbols under the period mapping.

In the functions below, M must not be a +1 or −1 quotient and must be cuspidal.

PeriodMapping(M, prec)

The period mapping attached toM , computed using prec terms of the q-expansions
of modular forms associated to M .

Periods(M, prec)

The complex period lattice associated to M , computed using prec terms of the
q-expansions of modular forms associated to M .

ClassicalPeriod(M, j, prec)

The value

rj(f) =

∫ i∞

0

f(z)zjdz.

0.14.2 Projection Mappings

Let M be a space of modular symbols over a field K. For many purposes it is useful to
have a surjective map

π : AmbientSpace(M)→ V,

where V is a vector space over K and ker(π) is the same as the kernel of the period
mapping.

RationalMapping(M)

A surjective linear map from the ambient space of M to a vector space, such that
the kernel of this map is the same as the kernel of the period mapping.

IntegralMapping(M)

A surjective linear map from the ambient space of M to a vector space, such that
the kernel of this map is the same as the kernel of the period mapping. This map
is chosen in such a way that the image of

IntegralBasis(CuspidalSubspace(AmbientSpace(M)))

is the standard Z-lattice. (Note that M must be defined over Q.)

Example H0E24

> M := ModularSymbols(33); M;

Full Modular symbols space of level 33, weight 2, and dimension 9

> S := CuspidalSubspace(M);

> N := NewSubspace(S);

> phi := RationalMapping(N);

> [phi(x) : x in IntegralBasis(S)];

[
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( -2 4/3),

( -4 2/3),

( -2 2/3),

(-2 0),

( -2 -2/3),

(-4 0)

]

Notice that the image of the basis IntegralBasis(S) for H1(X0(33),Z) is not Z × Z. However,
IntegralMapping(N) is normalized so that the image is Z× Z:
> int := IntegralMapping(N);

> [int(S.i) : i in [1..Dimension(S)]];

[

( 2 -1),

( 1 -2),

( 1 -1),

( 0 -2),

( 0 -1),

(-1 -1)

]

Consider a quotient Af of J0(N) attached to a newform f ∈ S2(Γ0(N)). Using IntegralMapping
and the Abel-Jacobi theorem, we can see the image in Af (Q) of the point (0)− (∞) ∈ J0(N)(Q).
In the level 97 example below, this image has order 8, which is the numerator of (97− 1)/12.
> Af := ModularSymbols("97B"); Af;

Modular symbols space of level 97, weight 2, and dimension 8

> int := IntegralMapping(Af);

> // Let x be the modular symbol {0,oo}

> x := AmbientSpace(Af)!<1,[Cusps()|0,Infinity()]>;

> int(x);

(-5/8 1/4 -1/4 0 0 1/4 3/8 1/4)

> Numerator((97-1)/12);

8

0.15 Modular Abelian Varieties

Let M be a space of weight 2 cuspidal modular symbols with trivial character that cor-
responds to a Galois-conjugacy class of newforms, and let AM (C) be the cokernel of the
period map. G. Shimura proved that AM (C) is the set of complex points of an abelian
variety AM defined over Q. Let N be the level of M and let J0(N) be the Jacobian
of the modular curve X0(N). Shimura constructed AM as a quotient of J0(N) by an
abelian subvariety. More precisely, if I is the annihilator of M in the Hecke algebra, then
AM = J0(N)/IJ0(N).

When AM has dimension 1 it is an elliptic curve, and the theory of computing with
AM is well developed, though many interesting problems remain. In the contrary case,
when AM has dimension greater than 1, the theory of computation with AM is still in its
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infancy. Fortunately, it is possible to compute a number of interesting quantities about
AM using algorithms that rely on our extensive knowledge of J0(N).

Magma contains functions for computing the modular degree, congruence modulus,
upper and lower bounds on the order of the torsion subgroup, and the order of the com-
ponent group of the closed fiber of the Néron model of AM at primes that exactly divide
the level of M .

0.15.1 Modular Degree and Torsion

ModularDegree(M)

The modular degree of M , which is defined as follows. Let M be a space of modular
symbols of weight 2 and trivial character. The modular degree of M is the square
root of #ModularKernel(M). When M corresponds to an elliptic curve E = AM ,
then the modular degree of M is the degree of induced map X0(N)→ E.

CongruenceModulus(M : parameters)

Bound RngIntElt Default : −1

The congruence number r ofM . This is the index in Sk(Γ0(N),Z) of the sum L+W
of the lattice W of cusp forms L corresponding to M and the lattice of cusp forms
corresponding to the complement of L in S.

TorsionBound(M, maxp)

The following upper bound on the order of the torsion subgroup of the abelian
variety A attached to M :

gcd{#A(Fp) : 3 ≤ p ≤ maxp, p 6 |N},

where N is the level of M . This bound is an isogeny invariant, so it is also a bound
on the order of the torsion subgroup of the dual abelian variety A∨ of A.

To compute a lower bound, use #SubgroupOfTorus(M,WindingElement(M)).

Example H0E25

We compute the first example of an optimal elliptic curve overQ such that the congruence modulus
does not equal the modular degree. (See [FM99] for further discussion of this problem. We warn
the reader that the divisibility r | deg(ϕ) | rN i cited there is incorrect, as our 54B example shows.)

> E := ModularSymbols("54B");

> ModularDegree(E);

2

> CongruenceModulus(E);

6

We next verify directly that the congruence modulus is divisible by 3.

> A := ModularSymbols("27A"); A; // 27=54/2.

Modular symbols space of level 27, weight 2, and dimension 2
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> A54 := ModularSymbols(A,54); A54; // all images of A at level 54.

Modular symbols space of level 54, weight 2, and dimension 4

> qE := qIntegralBasis(E,17);

> qA54 := qIntegralBasis(A54,17);

> &+qA54 - &+qE;

-3*q^4 + 3*q^5 - 3*q^8 + 3*q^10 - 3*q^11 + 9*q^13 + 3*q^16 + O(q^17)

> IntersectionGroup(E,A54); // however, the intersection is trivial.

Abelian Group of order 1

Ken Ribet proved that if E is an optimal elliptic curve quotient of J0(N), with N prime, and
if fE is the corresponding newform, then the congruence modulus of fE equals the modular
degree of E. The author is aware of no counterexamples to the following more general statement:
“If E is an optimal elliptic curve of square-free conductor, then the congruence modulus of the
newform fE attached to E equals the modular degree of E.” An analogous statement for abelian
varieties is false, even at prime level. The first counterexample is ModularSymbols("431F"), which
corresponds to an abelian variety of dimension 24. In this case, the modular degree is 211 · 6947,
whereas the congruence modulus is 210 · 6947.
The following code makes a table of congruence moduli and modular degrees for the elliptic curves
of conductor near 54. Notice the counterexample at level 54.

> for N in [53..55] do

> C := CuspidalSubspace(ModularSymbols(N,2));

> newforms := NewSubspace(C);

> D := EllipticFactors(newforms,19);

> for E in D do

> printf "%o:\t%o,\t%o\n", N, ModularDegree(E), CongruenceModulus(E);

> end for;

> end for;

53: 2, 2

54: 2, 6

54: 6, 6

55: 2, 2

ModularKernel makes sense even for spaces of modular symbols of weight greater than 2. As in
the case of weight 2, this number gives information about congruences between modular forms.
The following example illustrates how ModularKernel suggest a congruence between a form of
level 10 and weight 4 with a form of level 5.

> M := ModularSymbols(10,4);

> S := CuspidalSubspace(M);

> D := NewformDecomposition(S); D;

[

Modular symbols space of level 10, weight 4, and dimension 2,

Modular symbols space of level 10, weight 4, and dimension 4

]

> #ModularKernel(D[1]);

10

> f := qEigenform(D[1],8);

> g := qEigenform(D[2],8);

> g2 := Evaluate(g,Parent(g).1^2);



48 Geometry Vol.

> f-(g+6*g2); // a congruence modulo 10!

-10*q^3 + 20*q^4 + 10*q^5 - 20*q^6 - 10*q^7 + O(q^8)

0.15.2 Tamagawa Numbers and Orders of Component Groups

We provide several functions for computing the orders of component groups of optimal quo-
tients of J0(N) at primes p that exactly divide N . Our algorithm involves Grothendieck’s
monodromy pairing on the character group of the toric part of the closed fiber at p of
the Néron model of J0(N); the theory behind this algorithm is described in [Ste01] (or
[Ste00]); see [KS00] for a computationally-oriented introduction to the algorithm. When N
is prime, we use the Mestre and Oesterlé method to construct the character group of the
torus, as described in [Mes86]. In general, the ideal theory of quaternion algebras is used.

Note: In the appendix to [Maz77], Mazur and Rapaport give an explicit formula for the
order of the component group of J0(N) at primes p ≥ 5 that exactly divide N . Their
formula is not currently used by the ComponentGroupOrder function.

The RealTamagawaNumber function computes the order of the “component group at
infinity”.

ComponentGroupOrder(M, p)

The order of the component group at p. This is the order of the group of Fp-points
of the component group of the reduction modulo p of the Néron model of the abelian
variety attached to M . At present, it is necessary that p exactly divides the level.
If Sign(M) is not equal to 0, then only the odd part of the order is returned.

TamagawaNumber(M, p)

The order of the group of Fp-rational points of the component group of M . We
require M to be associated to a single Galois-conjugacy class of newforms.

RealTamagawaNumber(M)

The number of connected components of AM (R).

MinusTamagawaNumber(M)

The number of connected components of the subgroup AM (C)− of AM (C) on which
complex conjugation acts as −1

Example H0E26

We compute the orders of the component groups of some abelian varieties.

> X11 := ModularSymbols("11A"); // corresponds to X_0(11).

> ComponentGroupOrder(X11,11);

5

> TamagawaNumber(X11,11);

5

> RealTamagawaNumber(X11);
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1

> MinusTamagawaNumber(X11);

1

> J37 := ModularSymbols("37"); J37;

Modular symbols space of level 37, weight 2, and dimension 4

> ComponentGroupOrder(J37,37);

3

> A, B := Explode(NewformDecomposition(J37));

> ComponentGroupOrder(A,37);

3

> ComponentGroupOrder(B,37);

1

We can also compute component groups of optimal quotients whose dimension is greater than 1.
The abelian varieties B and C below correspond to the Jacobians labeled 65B and 65A in [FLS+02],
respectively.

> J65 := ModularSymbols("65");

> A,B,C := Explode(SortDecomposition(NewformDecomposition(J65)));

> B;

Modular symbols space of level 65, weight 2, and dimension 4

> C;

Modular symbols space of level 65, weight 2, and dimension 4

> ComponentGroupOrder(B,5); // not the Tamagawa number

3

> ComponentGroupOrder(B,13);

3

> ComponentGroupOrder(C,5);

7

> ComponentGroupOrder(C,13);

1

> HeckeEigenvalueField(C);

Number Field with defining polynomial x^2 + 2*x - 1 over the

Rational Field

Mapping from: Univariate Quotient Polynomial Algebra in a over

Rational Field

with modulus a^2 + 2*a - 1 to Number Field with defining

polynomial x^2 + 2*x - 1 over the Rational Field given by a rule

[no inverse]

> ComponentGroupOrder(J65,5);

42

When the Atkin-Lehner involutionWp acts as +1 on a modular abelian variety A, the order of the
component group can be larger than the Tamagawa number cp = [A(Qp) : A0(Qp)] that appears
in the conjecture of Birch and Swinnerton-Dyer.

> AtkinLehner(B,5);

[1 0 0 0]

[0 1 0 0]

[0 0 1 0]



50 Geometry Vol.

[0 0 0 1]

> ComponentGroupOrder(B,5);

3

> TamagawaNumber(B,5);

1

The real and minus Tamagawa numbers are defined for spaces of modular symbols of any weight
over the rationals.

> Del := ModularSymbols("1k12A");

> Del;

Modular symbols space of level 1, weight 12, and dimension 2

Next we see that the period lattice associated to ∆ is rectangular.

> RealTamagawaNumber(Del);

2

> MinusTamagawaNumber(Del);

2

> Periods(Del,40);

[

(-0.0004853381649299516049241304429*i),

(0.001140737449583079336044545337)

]

0.16 Elliptic Curves

Let E be an elliptic curve. By the modularity theorem, which was recently proved by
Breuil, Conrad, Diamond, Taylor, and Wiles there is a two-dimensional space M of mod-
ular symbols attached to E. Let N be the conductor of E; then M is obtained from
ModularSymbols(N,2) by intersecting the kernels of Tp − ap(E) for sufficiently many p.

Warning: The computation ofM can already be very resource intensive for elliptic curves
for which Conductor(E) is on the order of 5000. For example, the seemingly harmless
expression ModularSymbols(EllipticCurve([0,6])) would bring my computer to its
knees.

ModularSymbols(E)

ModularSymbols(E, sign)

The space M of modular symbols associated to the elliptic curve E.

Example H0E27

We use the elliptic curve functions to numerically compute the Birch and Swinnerton-Dyer conjec-
tural order of the Shafarevich-Tate group of the elliptic curve 389A, which is the curve of rank 2
with smallest conductor. The Birch and Swinnerton-Dyer conjecture asserts that

L(r)(E, 1)

r!
=

∏

cp · Sha · Reg
|E(Q)tor|2

,
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where r is the order of vanishing of L(E, s) at s = 1.

> E := EllipticCurve(CremonaDatabase(),"389A");

> M := ModularSymbols(E);

> M;

Modular symbols space of level 389, weight 2, and dimension 2

> LRatio(M,1);

0

Next we compute the analytic rank and the leading coefficient of the L-series at s = 1. (If your
computer is very slow, use a number smaller than 300 below.)

> L1, r := LSeriesLeadingCoefficient(M,1,300);

> L1;

0.7593165002922467906576260031

> r; // The analytic rank is 2.

2

Finally we check that the rank conjecture is true in this case, and compute the conjectural order
of the Shafarevich-Tate group.

> Rank(E); // The algebraic rank is 2.

2

> Omega := RealVolume(M,300); Omega;

4.980435433609741580582713757

> Reg := Regulator(E); Reg;

0.1524601779431437875

> #TorsionSubgroup(E);

1

> TamagawaNumber(E,389);

1

> TamagawaNumber(M,389); // entirely different algorithm

1

> Sha := L1/(Omega*Reg); Sha;

0.9999979295234896211

0.17 Dimension Formulas

DimensionCuspFormsGamma0(N, k)

The dimension of the space Sk(Γ0(N)) of weight k cusp forms for Γ0(N).

DimensionNewCuspFormsGamma0(N, k)

The dimension of the new subspace of the space Sk(Γ0(N)) of weight k cusp forms
for Γ0(N).

DimensionCuspFormsGamma1(N, k)

The dimension of the space Sk(Γ1(N)) of weight k cusp forms for Γ1(N).
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DimensionNewCuspFormsGamma1(N, k)

The dimension of the new subspace of the space Sk(Γ1(N)) of weight k cusp forms
for Γ1(N).

DimensionCuspForms(eps, k)

The dimension of the space Sk(Γ1(N))(ε) of cusp forms of weight k and Dirichlet
character eps. The level N is the modulus of eps. The dimension is computed using
the formula of Cohen and Oesterlè (see [CO77]).

Example H0E28

> DimensionCuspFormsGamma0(11,2);

1

> DimensionCuspFormsGamma0(1,12);

1

> DimensionCuspFormsGamma0(5077,2);

422

> DimensionCuspFormsGamma1(5077,2);

1071460

> G := DirichletGroup(5*7);

> eps := G.1*G.2;

> IsOdd(eps);

true

> DimensionCuspForms(eps,2);

0

> DimensionCuspForms(eps,3);

6

The dimension of the space of cuspidal modular symbols is twice the dimension of the space of
cusp forms.

> Dimension(CuspidalSubspace(ModularSymbols(eps,3)));

12
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