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Klein Quartic

It's a very symmetric genus 3 projective curve. There can multiple
ways to look at it. (Algebraic curve, Riemann surface, Hyperbolic
surface, Tesselations, Modular curve, Shimura curve)
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Introduction

@ Made of 24 Heptagons, 3 Heptagons meeting at a vertex.

@ Start from any edges, move along the edges -LRLRLRLR, you
get back to the initial edge.

@ All the 24 heptagon are equivalent (24 symmetries). 7 rotations
of a fixed heptagon are also symmetries. Total 24 x 7 = 168
symmetries. (336 if you include reflections.)
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From Hyperbolic Tilings
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From Hyperbolic Tilings




Quotient of (2, 3, 7) tiling

The fundamental domain is a 14-gon tiled by 336 (2,3,7) triangles.
Area =
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Folding/ldentifications

connect edges 1 and 6

connect edges 3 and 8

connect edges 3 and 10
connect edges 7 and 12
connect edges 9 and 14
connect edges 11 and 2
connect edges 13 and 4
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Topology

Euler's formula: 2 —-2g =V — E+ F
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Symmetries

The group of symmetries is

G= <5, t;s? =t = (st)® = (51“3')4 = 1>

G = PSLQ(]F7) ~ GL3(F2)

{(i Z);a,b,c,dEZ/?Z,ab—cd:1}/{j:1d}

1-M(7)—=>T1)—-G—1
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Representation theory of the Group

c 1A 2A 3A 4A T7A 7B

#c 1 21 56 42 24 24
v 1 1 1 1 1 1
x3s 3 -1 0 1 a @
s 3 -1 0 1 a a
e 6 2 0 0 -1 —1
x» 7 -1 1 -1 0 0
s 8 0 -1 0 1 1
0= (gt = T
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Klein Model

X3, IS the character of a representation of G on 3-dimensional space
V' and Y3 is the dual representation on V*. If X, Y, Z are coordinates
on V, the ring on invariant polynomials C [V*]° is generated by

Dy, g, Dy, Pry. Dy, Bg, P14 are algebraically independent and d)%l is
a polynomial in &4, &g, &4

Oy = XY +Y3Z4+ 23X
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Klein Model

20, /0X2  DPd,/OXOY 02d,/0XDZ
020, /0YOX  Pdy/0Y?  920,/0YOZ
20, /020X Pdy/0Z0Y 02D, /072

1
Qg = ——
6 54

02D, /OX2 20, /0XOY 02D, /0XDZ Obe/OX
1| 920,/0Y0X 920, /0Y? 020, /0YOZ Obg/Y

P14 =51 020,/020X 920,)0Z0Y  070,/07% 0g/0Z
D06 /OX g OY  0Pg/0Z 0

00, /OX  0D,)0Y  0b,/0Z

®yy = algq(;“’xq’ﬁ;/q’;) :% 0P /0X  0Ps/0Y  06/0Z

(X, Y,2) OB1JOX  OD1a /Y O1a/0Z
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Reduction mod 2 and 7

Take a lattice in V and reduce mod 2 and mod 7.

In particular, primes o, @, above 2 in Ok, k = Q(v/—7), reduce
modulo @, to get

G~ GL3 (]Fz)
and reduce modulo the unique prime g7 = (v/—7)of Ok above 7 to
get

G — GL2 (IF7)

The isomorphism PSLy(IF7) ~ GL3(IF3) is just mod 2 and mod 7
manifestions of isometries of the lattice.
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As Algebraic Curve
The projective algebraic curve X’ defined by
XY +YZ4+2Z3X=0

@ It is a smooth genus 3 curve, and has 168 symmetries

@ 168 matches the maximum symmetries a genus 3 curve can
have. (Hurwitz bound 84(g — 1))

@ Not hyperelliptic
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XY +Y3Z+2723X=0

o

-4 -2 0 2 4
y+yPi+z=0

The real pointson Z = 1.
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XY +Y3Z+23X=0

The real pointson X+ Y +2Z =1.

Surya Teja Gavva
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Why is it smooth?
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As Algebraic Curve

Why is the genus 37 ]

Genus-Degree formula?

Riemann-Hurwitz formula: C — P [X, Y, Z] — [X, Z]
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Affine part of the curve

If we just look at the Affine part of the curve, we get 24 cusps
(punctures on the surface) corresponding to the points at infinity. We
can think of them as the center of the 24 heptagons.
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Symmetries in terms of the equation
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Symmetries in terms of the equation
w* 0 0 [ sin2a sin3a —sina

A= 0 w? 0 |, B:% sin3a¢ —sina  sin2a |,
0 0 w —sina  sin2a  sin 3«

A
I
]
O O =
O = O

w=1a=m/T

@ A has order 7, B has order 2, and C has order 3
@ Quotient of (2,3,7) triangle group. (More relations)
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Special Points

@ An orbit of 24 points, each of which is fixed by a subgroup of
order 7. These are inflection points (zeros of Hessian ®g.)

@ 56 points consisting of 28 pairs of points on the bitangents on
the curve. They form one orbit and each of the points is fixed by
a subgroup of order 3. Zeros of ®1,

@ 21 lines each fixed by an order 2 subgroup. Each line consists of
4 points on the curve. So 84 points in total. Zeros of ®,;

@ Rest of the orbits have size exactly |G| = 168
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Quotients X' /H

For any subgroup H C G, we can consider the quotient X'/H.

@ Quotients by subgroups of order 2, 3,4 give genus 1 curves; Any
other subgroups give genus 0 curves, hence coverings X — CP!

e For (h) order 3 subgroup, we get

X/(h) = Ex : y* = 4x* + 21x* + 28x
(1: e*2mi/3 : e¥27i/3) branch points (fixed points of (h))
j = —153, Complex multiplication by O.
o X - X/G=CP!
_ Pl 5

X, Y, Z = —= = ==+ 172
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Mordel-Weil Lattice

Space of maps M = {f : X — E,}. L = M/Ey is a lattice with
positive definite quadratic form Q(f) = 2deg(f).

0, = Z N,q" = Z q%é(f)
n=0 fel
61 is a modular form of weight 3 with quadratic character on I'y(7).

0. = (Z qﬁ5> ~6q[J1-a)* (1 -4’

BEOK

=1+ 42¢° +56q° + 849" + 168q¢° + 280q° + 336q" + 462¢° + - -
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Rational Points on X

By Falting's theorem, there are at most finite number of rational
points.

But here we can use X — Ey, to show explicitly that
(1:0:0),(0:1:0),(0:0:1) are the only rational points.

@ A descent argument via a 2-isogeny to show that the only
rational points on Ej are (0,0) and the point at infinity.

o Compute preimages of these points.
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Descent Argument
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FLT n=7

There is a map from the Fermat curve F : A’ + B” + C’ = 0 to the
Klein quartic given by

(A, B,C) — (X,Y,Z) = (A3C,B*A, C*B)
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X mod 2

Compute the number of points over the finite field Fom = Nom

m 12 3 4 5 6 7 8
# (X (F)) |3 5 24 17 33 38 129 257

which implies

Z(X/Fy, T) = exp (Z #X (Fgn) E) (1 J_r 5T§(1+_82TT)

n

Extremal properties. For instance, highest number of Fys points
among all genus 3 curves. (Coming from 24 inflection points)
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X mod 7

The curve is singular. For instance (2,4, 1) is a singular point.
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X mod p

Different models like
Xl4 + Y/4 + Z/4 + 30( (XIZ Y/2 + XlZle + YlZz/Z) — 0

have good reduction in char 7 over large enough extension of Q
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As Modular Curve X(7)

G = PSL, (F7) =T(1)/T(7)
[(7) acts on the upper half-plane H, and we have Y (7) = H/I(7)
and X(7) = H*/T. Y(7) has 24 cusps. X(7) is the compactification.
@ X(1) parametrizes elliptic curves

@ X(N) parametrizes elliptic curves with a level N structure:
(Isomorphism of N-torsion elements with (Z/N) x pp)
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X(7) = X(1)

The inverse images of i, e>™/3

and 24 special points.

, 00 are precisely the orbits of 84, 56
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Modular Forms

Consider weight 2 modular forms on (7).

f (‘” * b) = (cr + dPF(7)

cT +d
f(7)dT is [(7) invariant.
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Modular Forms

x(1)=— Z

£=1( mod §)

Re(€)q/"

y(r)= > Re(§)q"

£=2( mod f)

2(r)= ) Re(&)q*”

&£=4( mod §)

f = (v/—T7) be the unique prime ideal above 7 in Z[*l;\ﬁ]

x=q"" (~1+4q—3¢° —5¢° + 5¢* +8¢° — 10¢" + 4¢° — 64" - -)
y=¢""(1-3q—¢*+8¢° —6¢° — 4q° +2¢° +9¢" - -)
z=q"" (1-3q+4¢*>+2q* +3¢° — 12¢° — 5q" + 7¢° + 16¢'° - - - )
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Uniformization, Ramanujan g-series

8(7') _ Z(_l)nq(14n+5)2/56

neZ
b(r) = Y _(~1)"qUn /e
nezZ
C( ) Z( 1)n (14n+1)2/56
neZ

a, b, c satisfy the equation X3Y + Y3Z + 73X =0
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Embedding X(7)

The map X(7) = P2 isgiven by 7 — [x:y:z] =[a: b: ]
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(b67 q>147 CI)21

de(x,y,2z) = —qH1—q t =g —24¢% +252¢°- -

o0 3 .n
Gra(x,y,2) = A2E, = A2 (1 +240%° 1”_qqn>
n=1

= ¢ +192¢° — 8280q" - - -

Poi(x,y,2) = A3E; = A3 (1—50421_q )

= q> — 576q" + 22140¢° - - -
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Belyi map

The map C — C/G is a Belyi map— ramified at 0,1728 and cc.
Dessin d'enfant is the 1-skeleton of the heptagonal tiling above.
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As a Shimura Curve

What is Shimura Curve? A quaternion algebra B over Q such that
B ®g R = My(R). Then the element of norm +£1 in a maximal order
O of B form a discrete subgroup of SL,(IR) with cocompact
quotients.

e O[r,1]7 is a lattice in C?, and the quotient C?/A is an abelian
variety with endomorphism ring O.

@ The units of norm 1 just act by changing basis. And hence H /I
parametrizes abelian surfaces with quaternionic multiplication.

We can generalize to algebras over number fields K such that for
some real embedding v,

B ®K Kv ~ MQ(R)
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As a Shimura Curve

c=(+ ¢ =2cos(2m/7)
1
P=j=c, ij:—ji,j’:5(1+ci+(c2+c+1)j)
The norm one elements in Z[c]|1 + Z[c|i + Z[c]j’ + Z|c]ij’ is the
triangle group A(2,3,7). The Fuchsian group corresponding to X is
the subgroup

{a11 + api + asj' + a4ij’ | a; € Z|c], a2, a3,a2 = 0mod (2 —¢)}
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Spectral Theory

The Laplacian-Betrami operator (div grad)

1 ..
Af = ——0; (\V]gl | g70;f
Vel < ' )

is self-adjoint with spectrum given below. (Dual to length spectrum
on the surface)

Eigenvalue | Numerical value | Multiplicity
Ao 0 1
A1 2.67793 8
A2 6.62251 7
A3 10.8691 6
Ay 12.1844 8
As 17.2486 7
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Problems

Understand

algebraic geometry of the curve
The arithmetic aspects:

The analytic aspects:

as hyperbolic surface

as a Riemann surface

©0000F0

the symmetries and representation theory
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Visualizing the surface

Greg Egan

@ http://www.gregegan.

KleinQuartic.html

@ http://www.gregegan.

KleinQuarticEq.html
Jos Leys

@ https://www.youtube.
@ https://www.youtube.

Tim Hutton

@ https://www.youtube.

Surya Teja Gavva

net/SCIENCE/KleinQuartic/

net/SCIENCE/KleinQuartic/

com/watch?v=YhVsqnXhVWc
com/watch?v=6SZ80NJ1w7I

com/watch?v=noLJ_ktAxQE
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http://www.gregegan.net/SCIENCE/KleinQuartic/KleinQuartic.html
http://www.gregegan.net/SCIENCE/KleinQuartic/KleinQuartic.html
http://www.gregegan.net/SCIENCE/KleinQuartic/KleinQuarticEq.html
http://www.gregegan.net/SCIENCE/KleinQuartic/KleinQuarticEq.html
https://www.youtube.com/watch?v=YhVsqnXhVWc
https://www.youtube.com/watch?v=6SZ8ONJlw7I
https://www.youtube.com/watch?v=noLJ_ktAxQE
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