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Klein Quartic

It’s a very symmetric genus 3 projective curve. There can multiple
ways to look at it. (Algebraic curve, Riemann surface, Hyperbolic
surface, Tesselations, Modular curve, Shimura curve)
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Introduction

Made of 24 Heptagons, 3 Heptagons meeting at a vertex.

Start from any edges, move along the edges -LRLRLRLR, you
get back to the initial edge.

All the 24 heptagon are equivalent (24 symmetries). 7 rotations
of a fixed heptagon are also symmetries. Total 24× 7 = 168
symmetries. (336 if you include reflections.)
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From Hyperbolic Tilings
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From Hyperbolic Tilings
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Quotient of (2, 3, 7) tiling

The fundamental domain is a 14-gon tiled by 336 (2, 3, 7) triangles.
Area =
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Folding/Identifications
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Topology

Euler’s formula: 2− 2g = V − E + F
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Symmetries

The group of symmetries is

G =
〈
s, t; s2 = t7 = (st)3 =

(
st3
)4

= 1
〉

G = PSL2(F7) ' GL3(F2).

{(
a b
c d

)
; a, b, c , d ∈ Z/7Z, ab − cd = 1

}
/{±Id}

1→ Γ(7)→ Γ(1)→ G → 1
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Representation theory of the Group

α := ζ + ζ2 + ζ4 =
−1 +

√
−7

2
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Klein Model

χ3, is the character of a representation of G on 3-dimensional space
V and χ̄3 is the dual representation on V ∗. If X ,Y ,Z are coordinates
on V , the ring on invariant polynomials C [V ∗]G is generated by
Φ4,Φ6,Φ14,Φ21. Φ4,Φ6,Φ14 are algebraically independent and Φ2

21 is
a polynomial in Φ4,Φ6,Φ14

Φ4 := X 3Y + Y 3Z + Z 3X

Surya Teja Gavva Klein’s Quartic Rutgers University 12 / 44



Klein Model

Φ6 := − 1

54

∣∣∣∣∣∣
∂2Φ4/∂X

2 ∂2Φ4/∂X∂Y ∂2Φ4/∂X∂Z
∂2Φ4/∂Y ∂X ∂2Φ4/∂Y

2 ∂2Φ4/∂Y ∂Z
∂2Φ4/∂Z∂X ∂2Φ4/∂Z∂Y ∂2Φ4/∂Z

2

∣∣∣∣∣∣

Φ14 =
1

9

∣∣∣∣∣∣∣∣
∂2Φ4/∂X

2 ∂2Φ4/∂X∂Y ∂2Φ4/∂X∂Z ∂Φ6/∂X
∂2Φ4/∂Y ∂X ∂2Φ4/∂Y

2 ∂2Φ4/∂Y ∂Z ∂Φ6/∂Y
∂2Φ4/∂Z∂X ∂2Φ4/∂Z∂Y ∂2Φ4/∂Z

2 ∂Φ6/∂Z
∂Φ6/∂X ∂Φ6/∂Y ∂Φ6/∂Z 0

∣∣∣∣∣∣∣∣

Φ21 =
∂ (Φ4,Φ6,Φ14)

14∂(X ,Y ,Z )
=

1

14

∣∣∣∣∣∣
∂Φ4/∂X ∂Φ4/∂Y ∂Φ4/∂Z
∂Φ6/∂X ∂Φ6/∂Y ∂Φ6/∂Z
∂Φ14/∂X ∂Φ14/∂Y ∂Φ14/∂Z

∣∣∣∣∣∣
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Reduction mod 2 and 7

Take a lattice in V and reduce mod 2 and mod 7.
In particular, primes ℘2, ℘̄2 above 2 in Ok , k = Q(

√
−7), reduce

modulo ℘2 to get

G ' GL3 (F2)

and reduce modulo the unique prime ℘7 = (
√
−7)of Ok above 7 to

get
G → GL2 (F7)

The isomorphism PSL2(F7) ' GL3(F2) is just mod 2 and mod 7
manifestions of isometries of the lattice.
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As Algebraic Curve

The projective algebraic curve X defined by

X 3Y + Y 3Z + Z 3X = 0

It is a smooth genus 3 curve, and has 168 symmetries

168 matches the maximum symmetries a genus 3 curve can
have. (Hurwitz bound 84(g − 1))

Not hyperelliptic
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X 3Y + Y 3Z + Z 3X = 0

The real points on Z = 1.
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X 3Y + Y 3Z + Z 3X = 0

The real points on X + Y + Z = 1.
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Why is it smooth?
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As Algebraic Curve

Why is the genus 3?

Genus-Degree formula?

Riemann-Hurwitz formula: C → P1, [X ,Y ,Z ]→ [X ,Z ]
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Affine part of the curve

If we just look at the Affine part of the curve, we get 24 cusps
(punctures on the surface) corresponding to the points at infinity. We
can think of them as the center of the 24 heptagons.
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Symmetries in terms of the equation

A =

 ω4 0 0
0 ω2 0
0 0 ω

, B = −2√
7

 sin 2α sin 3α − sinα
sin 3α − sinα sin 2α
− sinα sin 2α sin 3α

,

C =

 0 1 0
0 0 1
1 0 0


ω7 = 1, α = π/7

1 A has order 7, B has order 2, and C has order 3

2 Quotient of (2, 3, 7) triangle group. (More relations)

Surya Teja Gavva Klein’s Quartic Rutgers University 21 / 44



Symmetries in terms of the equation

A =

 ω4 0 0
0 ω2 0
0 0 ω

, B = −2√
7

 sin 2α sin 3α − sinα
sin 3α − sinα sin 2α
− sinα sin 2α sin 3α

,

C =

 0 1 0
0 0 1
1 0 0


ω7 = 1, α = π/7

1 A has order 7, B has order 2, and C has order 3

2 Quotient of (2, 3, 7) triangle group. (More relations)

Surya Teja Gavva Klein’s Quartic Rutgers University 21 / 44



Special Points

An orbit of 24 points, each of which is fixed by a subgroup of
order 7. These are inflection points (zeros of Hessian Φ6.)

56 points consisting of 28 pairs of points on the bitangents on
the curve. They form one orbit and each of the points is fixed by
a subgroup of order 3. Zeros of Φ14

21 lines each fixed by an order 2 subgroup. Each line consists of
4 points on the curve. So 84 points in total. Zeros of Φ21

Rest of the orbits have size exactly |G | = 168
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Quotients X/H

For any subgroup H ⊂ G , we can consider the quotient X/H .

Quotients by subgroups of order 2, 3, 4 give genus 1 curves; Any
other subgroups give genus 0 curves, hence coverings X → CP1

For 〈h〉 order 3 subgroup, we get

X/〈h〉 = Ek : y 2 = 4x3 + 21x2 + 28x(
1 : e±2πi/3 : e∓2πi/3

)
, branch points (fixed points of 〈h〉)

j = −153, Complex multiplication by Ok .

X → X/G ∼= CP1

(X ,Y ,Z )→ j =
Φ3

14

Φ7
6

=
Φ2

21

Φ7
6

+ 1728
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Mordel-Weil Lattice

Space of maps M = {f : X → Ek}. L = M/Ek is a lattice with
positive definite quadratic form Q(f ) = 2deg(f ).

θL :=
∞∑
n=0

Nnq
n =

∑
f ∈L

q
1
2
Q̂(f )

θL is a modular form of weight 3 with quadratic character on Γ0(7).

θL =

(∑
β∈Ok

qββ̄

)3

− 6q
∞∏
n=1

(1− qn)3 (1− q7n
)3

= 1 + 42q2 + 56q3 + 84q4 + 168q5 + 280q6 + 336q7 + 462q8 + · · ·
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Rational Points on X

By Falting’s theorem, there are at most finite number of rational
points.
But here we can use X → Ek , to show explicitly that
(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1) are the only rational points.

A descent argument via a 2-isogeny to show that the only
rational points on Ek are (0, 0) and the point at infinity.

Compute preimages of these points.
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Descent Argument
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FLT n = 7

There is a map from the Fermat curve F : A7 + B7 + C 7 = 0 to the
Klein quartic given by

(A,B ,C )→ (X ,Y ,Z ) = (A3C ,B3A,C 3B)
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X mod 2

Compute the number of points over the finite field F2m = N2m

m 1 2 3 4 5 6 7 8 . . .
# (X (F2m)) 3 5 24 17 33 38 129 257 . . .

which implies

Z (X/F2,T ) = exp

(
∞∑
n=1

#X (Fqn)
T n

n

)
=

1 + 5T 3 + 8T 6

(1− T )(1− 2T )

Extremal properties. For instance, highest number of F23 points
among all genus 3 curves. (Coming from 24 inflection points)
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X mod 7

The curve is singular. For instance (2, 4, 1) is a singular point.
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X mod p

Different models like

X ′4 + Y ′4 + Z ′4 + 3α
(
X ′2Y ′2 + X ′2Z ′2 + Y ′2Z ′2

)
= 0

have good reduction in char 7 over large enough extension of Q
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As Modular Curve X (7)

G ∼= PSL2 (F7) = Γ(1)/Γ(7)

Γ(7) acts on the upper half-plane H, and we have Y (7) = H/Γ(7)
and X (7) = H∗/Γ. Y (7) has 24 cusps. X (7) is the compactification.

X (1) parametrizes elliptic curves

X (N) parametrizes elliptic curves with a level N structure:
(Isomorphism of N-torsion elements with (Z/N)× µN)
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X (7)→ X (1)

The inverse images of i , e2πi/3,∞ are precisely the orbits of 84, 56
and 24 special points.
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Modular Forms

Consider weight 2 modular forms on Γ(7).

f

(
aτ + b

cτ + d

)
= (cτ + d)2f (τ)

f (τ)dτ is Γ(7) invariant.
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Modular Forms

x(τ) = −
∑

ξ≡1( mod f)

Re(ξ)qξξ̄/7

y(τ) =
∑

ξ≡2( mod f )

Re(ξ)qξξ̄/7

z(τ) =
∑

ξ≡4( mod f)

Re(ξ)qξξ̄/7

f = (
√
−7) be the unique prime ideal above 7 in Z[−1+

√
7

2
]

x = q4/7
(
−1 + 4q − 3q2 − 5q3 + 5q4 + 8q6 − 10q7 + 4q9 − 6q10 · · ·

)
y = q2/7

(
1− 3q − q2 + 8q3 − 6q5 − 4q6 + 2q8 + 9q10 · · ·

)
z = q1/7

(
1− 3q + 4q3 + 2q4 + 3q5 − 12q6 − 5q7 + 7q9 + 16q10 · · ·

)
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Uniformization, Ramanujan q-series

a(τ) = −
∑
n∈Z

(−1)nq(14n+5)2/56

b(τ) =
∑
n∈Z

(−1)nq(14n+3)2/56

c(τ) =
∑
n∈Z

(−1)nq(14n+1)2/56

a, b, c satisfy the equation X 3Y + Y 3Z + Z 3X = 0
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Embedding X (7)

The map X (7)→ P2 is given by τ → [x : y : z] = [a : b : c]
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Φ6,Φ14,Φ21

Φ6(x, y, z) = ∆ = q
∞∏
n=1

(1− qn)24 = q − 24q2 + 252q3 · · ·

Φ14(x, y, z) = ∆2E2 = ∆2

(
1 + 240

∞∑
n=1

n3qn

1− qn

)
= q2 + 192q3 − 8280q4 · · ·

Φ21(x, y, z) = ∆3E3 = ∆3

(
1− 504

∞∑
n=1

n5qn

1− qn

)
= q3 − 576q4 + 22140q5 · · ·

Surya Teja Gavva Klein’s Quartic Rutgers University 37 / 44



Belyi map

The map C → C/G is a Belyi map– ramified at 0, 1728 and ∞.
Dessin d’enfant is the 1-skeleton of the heptagonal tiling above.
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As a Shimura Curve

What is Shimura Curve? A quaternion algebra B over Q such that
B ⊗Q R = M2(R). Then the element of norm ±1 in a maximal order
O of B form a discrete subgroup of SL2(R) with cocompact
quotients.

O[τ, 1]T is a lattice in C2, and the quotient C2/Λ is an abelian
variety with endomorphism ring O.

The units of norm 1 just act by changing basis. And hence H/Γ
parametrizes abelian surfaces with quaternionic multiplication.

We can generalize to algebras over number fields K such that for
some real embedding v ,

B ⊗K Kv ' M2(R)
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As a Shimura Curve

c = ζ + ζ−1 = 2 cos(2π/7)

i2 = j2 = c , ij = −ji, j′ =
1

2

(
1 + c i +

(
c2 + c + 1

)
j
)

The norm one elements in Z[c]1 + Z[c]i + Z[c]j′ + Z[c]ij′ is the
triangle group ∆(2, 3, 7). The Fuchsian group corresponding to X is
the subgroup

{a11 + a2i + a3j
′ + a4ij

′ | ai ∈ Z[c], a2, a3, a4 = 0 mod (2− c)}
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Spectral Theory

The Laplacian-Betrami operator (div grad)

∆f =
1√
|g |
∂i

(√
|g | | g ij∂j f

)
is self-adjoint with spectrum given below. (Dual to length spectrum
on the surface)

Eigenvalue Numerical value Multiplicity
λ0 0 1
λ1 2.67793 8
λ2 6.62251 7
λ3 10.8691 6
λ4 12.1844 8
λ5 17.2486 7
...

...
...
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Problems

Understand

1 algebraic geometry of the curve

2 The arithmetic aspects:

3 The analytic aspects:

4 as hyperbolic surface

5 as a Riemann surface

6 the symmetries and representation theory
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Visualizing the surface

Greg Egan

http://www.gregegan.net/SCIENCE/KleinQuartic/

KleinQuartic.html

http://www.gregegan.net/SCIENCE/KleinQuartic/

KleinQuarticEq.html

Jos Leys

https://www.youtube.com/watch?v=YhVsqnXhVWc

https://www.youtube.com/watch?v=6SZ8ONJlw7I

Tim Hutton

https://www.youtube.com/watch?v=noLJ_ktAxQE
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