The Bernstein polynomial $B_n(f)$ of a function f defined on $[0, 1]$ is defined as

$$B_n(f)(x) = \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} f\left(\frac{k}{n}\right)$$

Approximation theorem

Let f be a function defined on $[0, 1]$. For each point x of continuity of f, $B_n(f)(x) \to f(x)$ as $n \to \infty$. If f is continuous on $[0, 1]$, then the Bernstein polynomial $B_n(f)$ converges to f uniformly i.e., $\max_{x \in [0,1]} |f(x) - B_n(f)| \to 0$. Moreover for x a point of differentiability of f, $B_n'(f)(x) \to f'(x)$ If f is continuously differentiable on $[0, 1]$, then $B_n'(f)(x) \to f'(x)$ uniformly.
We have the following formulae

\[B_n(1) = \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} = 1 \]

\[B_n(x) = \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} \left(\frac{k}{n} \right) = x \]

\[B_n(x^2) = \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} \left(\frac{k}{n} \right)^2 = \frac{n-1}{n} x^2 + \frac{x}{n} \]

\[\sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} \left(\frac{k}{n} \right)^2 = \frac{x(1-x)}{n} \]

\[\sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} \left(\frac{k}{n} \right)^4 = \frac{x(1-x)(1+x(1-x)(3n-6))}{n^3} \]
Probabilistic idea:
\(\binom{n}{k} x^k (1 - x)^{n-k} \) is the probability of getting \(k \) heads in \(n \) throws if the probability of getting head is \(x \).— See Bernoulli distribution.

Hence the above expression can be interpreted as the expectation of the random variable \(f(K/n) \), where \(K \) is Bernoulli variable with probability parameter \(x \)
The expected value of \(K \) is \(nx \) and by law of large numbers, the probability is mostly concentrated around \(k \approx nx \). So \(f(k/n) \) is almost likely \(f(x) \). Hence the expected value which is \(B_n(f) \) behaves like \(f(x) \) for large \(n \).
Proof of the theorem:

\[B_n(f)(x) = \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} f\left(\frac{k}{n}\right) \]

\[f(x) = f(x) \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} \]

\[B_n(f)(x) - f(x) = \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} f\left(\frac{k}{n}\right) - \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} f(x) \]

\[|B_n(f)(x) - f(x)| = \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} |f\left(\frac{k}{n}\right) - f(x)| \]
We consider terms with $|\frac{k}{n} - x| < \delta$ and those with $|\frac{k}{n} - x| \geq \delta$ separately. As discussed in the proof, the former contributes the most to the sum. δ is chosen as follows

Given $\varepsilon > 0$, for x a point of continuity we have $|f(x) - f(y)| < \varepsilon$ if $|x - y| < \delta$.

\[
\sum_{|\frac{k}{n} - x| < \delta} \binom{n}{k} x^k (1 - x)^{n-k} |f\left(\frac{k}{n}\right) - f(x)| < \sum_{|\frac{k}{n} - x| < \delta} \binom{n}{k} x^k (1 - x)^{n-k} \varepsilon
\]

\[
< \sum_{k=0}^{n} \binom{n}{k} x^k (1 - x)^{n-k} \varepsilon = \varepsilon
\]
\[
\sum_{|\frac{k}{n} - x| \geq \delta} \binom{n}{k} x^k (1 - x)^{n-k} |f(\frac{k}{n}) - f(x)| < \sum_{|\frac{k}{n} - x| \geq \delta} \binom{n}{k} x^k (1 - x)^{n-k} (2M)
\]

\[
< 2M \sum_{|\frac{k}{n} - x| \geq \delta} \frac{(x - \frac{k}{n})^2}{\delta^2} \binom{n}{k} x^k (1 - x)^{n-k}
\]

\[
< 2M \sum_{k=0}^{n} \frac{(x - \frac{k}{n})^2}{\delta^2} \binom{n}{k} x^k (1 - x)^{n-k} = \frac{2Mx(1-x)}{n\delta^2} < \frac{2M}{n\delta^2}
\]

Choosing \(n \) large enough so that \(\frac{2M}{n\delta^2} < \varepsilon \) we have

\[
|f(x) - B_n(f)| < 2\varepsilon
\]

\(\square \)