Problem 1. Sketch the graph of $f(x)=\frac{x}{x^{2}-9}$.
Problem 2. Suppose that $f(x)$ is a twice differentiable function satisfying: $f(0)=1 ; f^{\prime}(x)>0$ for all $x \neq 0$; and $f^{\prime \prime}(x)<0$ for $x<0$ and $f^{\prime \prime}(x)>0$ for $x>0$.
(a) Sketch a possible graph of $f(x)$.
(b) Let $g(x)=f\left(x^{2}\right)$. Prove that $g(x)$ has a unique local extremum at $x=0$ and no points of inflection. Sketch a possible graph of $g(x)$.

Problem 3. Let $P=(a, b)$ lie in the first quadrant (so $a, b>0$). Find the slope of the line through P such that the triangle bounded by this line and the axes in the first quadrant has minimal area. Then show that P is the midpoint of the hypotenuse of this triangle.

Problem 4. What is the longest pole that can fit around a corner between hallways of width a and b, as shown below?

(a) From the picture, we can see that the length of the pole L is a sum of two hypotenuses. Using θ and φ as indicated above, give a formula for L in terms of this sum.
(b) Notice that θ and φ are complementary angles. Because of this, we can write a function $L(\theta)$ of the length of the pole dependent only on θ (and the constants a and b).
(c) The maximum L will be a be at a critical point of this function $L(\theta)$. Conclude that $L^{\prime}(\theta)=0$ under the condition that $\tan ^{3}(\theta)=b / a$.
(d) Since $\tan \theta=\frac{b^{1 / 3}}{a^{1 / 3}}$, we can solve $\sin \theta$ and $\cos \theta$ for this particular angle. Putting everything together and simplifying, conclude that the maximum length is $L=\left(a^{2 / 3}+b^{2 / 3}\right)^{3 / 2}$.

