Problem 1. As promised in lecture, compute the derivative of $f(x) = x^{x^x}$.

Problem 2. Show that for any real number k, $(1 + \Delta x)^k \approx 1 + k \cdot \Delta x$ for small Δx . Then estimate $(1.02)^7$ and $(1.02)^{-3}$. Hint: you'll want to do the linear approximation to a particular function at a = 1.

Problem 3. Consider the function $f(x) = \frac{1}{x}$. Compute f'(x) and f''(x). Then compute the approximate value of f(1.1) (using the linear approximation) and give an upper bound for the error of this estimate.

Problem 4. Newton's method can be used to compute reciprocals without performing division. Let c > 0 and let $f(x) = x^{-1} - c$.

- (a) What does a root of f(x) correspond to?
- (b) Show that the main step of Newton's method has the formula $x f(x)/f'(x) = 2x cx^2$.
- (c) Estimate the reciprocal of 10.5 using the (good) guess $x_0 = 0.1$ and using the (bad) guess $x_0 = 0.5$. You only need to do Newton's method once.
- (d) Using the relevant graph, explain why $x_0 = 0.1$ will tend towards the correct answer, but $x_0 = 0.5$ will not.

Problem 5. The extreme value theorem only applies to *closed* intervals. Sketch a graph of a continuous function f(x) on (0, 5) in each of the following cases:

- (a) f(x) has an absolute maximum but no absolute minimum
- (b) f(x) has an absolute maximum and an absolute minimum
- (c) f(x) has neither an absolute maximum nor absolute minimum

Then sketch a graph of a *discontinuous* function on [0, 4] that has an absolute minimum but no absolute maximum. Hint: what sort of discontinuities can the function have?