Problem 1. As promised in lecture, compute the derivative of $f(x)=x^{x^{x}}$.

Problem 2. Show that for any real number $k,(1+\Delta x)^{k} \approx 1+k \cdot \Delta x$ for small Δx. Then estimate $(1.02)^{7}$ and $(1.02)^{-3}$. Hint: you'll want to do the linear approximation to a particular function at $a=1$.

Problem 3. Consider the function $f(x)=\frac{1}{x}$. Compute $f^{\prime}(x)$ and $f^{\prime \prime}(x)$. Then compute the approximate value of $f(1.1)$ (using the linear approximation) and give an upper bound for the error of this estimate.

Problem 4. Newton's method can be used to compute reciprocals without performing division. Let $c>0$ and let $f(x)=x^{-1}-c$.
(a) What does a root of $f(x)$ correspond to?
(b) Show that the main step of Newton's method has the formula $x-f(x) / f^{\prime}(x)=2 x-c x^{2}$.
(c) Estimate the reciprocal of 10.5 using the (good) guess $x_{0}=0.1$ and using the (bad) guess $x_{0}=0.5$. You only need to do Newton's method once.
(d) Using the relevant graph, explain why $x_{0}=0.1$ will tend towards the correct answer, but $x_{0}=0.5$ will not.

Problem 5. The extreme value theorem only applies to closed intervals. Sketch a graph of a continuous function $f(x)$ on $(0,5)$ in each of the following cases:
(a) $f(x)$ has an absolute maximum but no absolute minimum
(b) $f(x)$ has an absolute maximum and an absolute minimum
(c) $f(x)$ has neither an absolute maximum nor absolute minimum

Then sketch a graph of a discontinuous function on $[0,4]$ that has an absolute minimum but no absolute maximum. Hint: what sort of discontinuities can the function have?

