Problem 1. If a function is defined implicitly, there is no reason but habit that $\frac{d y}{d x}$ should be preferred over $\frac{d x}{d y}$. Consider the curve defined by the equation $y^{3}+1=x^{2}+y^{2}$.
(a) Compute both $\frac{d y}{d x}$ and $\frac{d x}{d y}$.
(b) Verify that the points $(1,1)$ and $(7,4)$ are both on the curve, then find the values of $\frac{d y}{d x}$ and $\frac{d x}{d y}$ at each.
(c) What do you notice about the relationship between these two versions of the derivative?

Problem 2. Consider the tilted ellipse $x^{2}-x y+y^{2}=3$, shown below in a dashed box:

The box is tangent to the ellipse on each side. Using implicit differentiation, compute the equation of these four lines. Hint: if a horizontal line is when $\frac{d y}{d x}=0$, what is a vertical line?

Problem 3. Calculate $y^{\prime \prime}$ at the point $(1,1)$ on the curve $x y^{2}+y-2=0$ in these two steps:
(a) Compute $\frac{d y}{d x}$ symbolically and simplify it. Use it to get the value $y^{\prime}(1,1)$.
(b) Compute $\frac{d^{2} y}{d x^{2}}$ symbolically, then plug in $(x, y)=(1,1)$ and $y^{\prime}(1,1)$ from above. You don't need to simplify the formula for $y^{\prime \prime}$ for this problem.

Problem 4. Consider $f(x)=\ln (x)$ and $g(x)=\ln (2 x)$. Verify that $f^{\prime}(x)=g^{\prime}(x)$. Is there a simpler way to explain this?

Problem 5. Compute the derivative using the quotient rule (without simplifying all the way) of the function

$$
h(x)=\frac{x(x+1)^{3}}{(3 x-1)^{2}}
$$

Repeat this process, but using logarithmic differentiation instead. Check that $h^{\prime}(1)$ is the same for both methods.

