Problem 1. Students were asked to compute the derivative of $f(x)=\sin \left(e^{x}-x^{2}+2\right)$. Explain why each of the following answers is wrong, then compute the correct derivative.
(a) $f^{\prime}(x)=\cos \left(e^{x}-x^{2}+2\right)$
(b) $f^{\prime}(x)=\cos \left(e^{x}-2 x\right)$
(c) $f^{\prime}(x)=\cos x \cdot\left(e^{x}-2 x\right)$
(d) $f^{\prime}(x)=\cos \left(e^{x}-x^{2}+2\right) \cdot\left(e^{x}-x^{2}+2\right)$

Problem 2. Suppose that $f^{\prime}(4)=g(4)=g^{\prime}(4)=1$. Do we have enough information to compute $F^{\prime}(4)$, where $F(x)=f(g(x))$? If not, what is missing?
Problem 3. Using the quotient rule, verify that $\frac{d}{d x} \csc (x)=-\csc (x) \cot (x)$. Then compute the second derivative of $\csc (x)$ (and simplify it as much as possible).

Problem 4. Consider the functions $f(x), g(x)$ pictured below:

In case the colors fail, $g(x)$ is the wiggly one and $f(x)$ is the straight one. Estimate $(f \circ g)^{\prime}(2)$ by visually inspecting the graph.

Problem 5. We said in class that sometimes higher derivatives give rise to a pattern. Let us examine the pattern in the following three cases:
(a) $\sin (x)$
(b) $\cos (2 x)$
(c) $\frac{1}{x}$

Proceed using the following steps:

1. Compute the first, second, and third derivative of each.
2. Propose a general formula for $f^{(n)}(x)$, that is, the nth derivative. For (b) and (c), this should include n.
3. Compute the fourth derivative and see if it fits with your formula.

Here are a couple of useful facts. The product of the first n numbers is called a factorial and written $n!=1 \cdot 2 \cdot 3 \cdots(n-1) \cdot n$. A nice way to write,,,,$-+-+ \ldots$ in an alternating way is $(-1)^{n}$, which is -1 when n is odd and +1 when n is even. Both of these tools will become extremely useful by the end of Math 152.

