Problem 1. Suppose that $f(x)$ and $g(x)$ are differentiable functions, and we know the following:

$$
f(2)=2, \quad g(2)=-3, \quad f^{\prime}(2)=1, \quad g^{\prime}(2)=5
$$

Compute the following:
(a) If $F(x)=\frac{f(x)}{g(x)}$, what is $F^{\prime}(2)$?
(b) If $G(x)=x^{3} \cdot f(x)-7 \cdot g(x)$, what is $G^{\prime}(2)$?
(c) If $H(x)=\frac{x^{2}+e^{x}}{g(x)}$, what are $H(2)$ and $H^{\prime}(2)$? Note: you should solve in terms of e.

Problem 2. Suppose that we have an annulus (or ring) that is composed of an outer circle with an inner circle removed:

We call r the inner radius and R the outer radius.
(a) If $r=2$ and $R=5$, what is the area of the annulus?
(b) Suppose that the inner radius is always $r=2$, but the outer radius varies. Write a formula $A(R)$ for the area and compute $\frac{d A}{d R}$.
(c) Repeat part (b), but assuming that the inner radius is always half of the outer radius.

Problem 3. Students were asked the following: find all points where the graph of the function

$$
f(x)=\left(x^{2}-1\right)\left(x^{3}-9 x^{2}+24 x+92\right)
$$

has a horizontal tangent line. Explain why the three solutions below are wrong, then give the correct strategy. Note: you'll likely need a calculator to solve this problem completely, so the strategy is enough.
(a) Horizontal tangent line means that we need to solve $f(x)=0$. This means that $x^{2}-1=0$ or $x^{3}-9 x^{2}+24 x+92=0$. Solving for x, we get $x=-1,1$ for the first equation and $x=-2$ for the second equation (which only has one root).
(b) Horizontal tangent line means that we need to find $f^{\prime}(0)$. So first we take the derivative,

$$
f^{\prime}(x)=\frac{d}{d x}\left(x^{2}-1\right)\left(x^{3}-9 x^{2}+24 x+92\right)=(2 x)\left(3 x^{2}-18 x+24\right)=6 x^{3}-36 x+48 x
$$

We therefore conclude that $f^{\prime}(0)=0$.
(c) Horizontal tangent line means that we need to solve $f^{\prime}(x)=0$. So first we take the derivative,
$f^{\prime}(x)=\frac{d}{d x}\left(x^{2}-1\right)\left(x^{3}-9 x^{2}+24 x+92\right)=(2 x)\left(3 x^{2}-18 x+24\right)=6 x^{3}-36 x+48 x$
and then factor it, so we need to solve $6 x\left(x^{2}-6 x+8\right)=0$. We can solve this to find the solutions are $x=0,2,4$.

