Problem 1. Compute $\lim _{x \rightarrow \infty} f(x)$ for $f(x)=e^{-x} \sin x$ by following these steps:
(a) Why isn't "plugging in" an option?
(b) Recall that we can bound $-1 \leq \sin x \leq 1$. Set up bounds for $f(x)$ using this.
(c) What is $\lim _{x \rightarrow \infty} e^{-x}$? Now use the squeeze theorem to solve the problem.

Problem 2. Consider the function $g(x)=x^{3}-2 x$.
(a) Consider the secant line through the point $x=5$ and an arbitrary point $x=c$. Show that the slope of this line is $c^{2}+5 c+23$.
(b) Compute the instantaneous rate of change at $x=5$ using a limit.

Problem 3. Compute the following limits, if they exist:
(a) $\lim _{x \rightarrow-2} \frac{4}{x^{3}}$
(b) $\lim _{x \rightarrow 1} \frac{x^{3}-x}{x-1}$
(c) $\lim _{x \rightarrow-\infty} \frac{x^{3}-2 x+1}{5 x^{3}+2 x^{2}-x+1}$
(d) $\lim _{\theta \rightarrow 0} \frac{\tan 2 \theta}{\sin 2 \theta}$
(e) $\lim _{\theta \rightarrow 0} \frac{\cos \theta-2}{\theta}$

Problem 4. Prove that $\cos \theta=2 \sin \theta$ has a solution in the interval $[\pi, 2 \pi]$. Hint: rephrase this as an intermediate value problem, don't try to find θ directly.

