Problem 1. Compute $\lim_{x\to\infty} f(x)$ for $f(x) = e^{-x} \sin x$ by following these steps:

- (a) Why isn't "plugging in" an option?
- (b) Recall that we can bound $-1 \le \sin x \le 1$. Set up bounds for f(x) using this.
- (c) What is $\lim_{x\to\infty} e^{-x}$? Now use the squeeze theorem to solve the problem.

Problem 2. Consider the function $g(x) = x^3 - 2x$.

- (a) Consider the secant line through the point x = 5 and an arbitrary point x = c. Show that the slope of this line is $c^2 + 5c + 23$.
- (b) Compute the instantaneous rate of change at x = 5 using a limit.

Problem 3. Compute the following limits, if they exist:

(a)
$$\lim_{x \to -2} \frac{4}{x^3}$$

(b)
$$\lim_{x \to 1} \frac{x^3 - x}{x - 1}$$

(c)
$$\lim_{x \to -\infty} \frac{x^3 - 2x + 1}{5x^3 + 2x^2 - x + 1}$$

(d)
$$\lim_{\theta \to 0} \frac{\tan 2\theta}{\sin 2\theta}$$

(e)
$$\lim_{\theta \to 0} \frac{\cos \theta - 2}{\theta}$$

Problem 4. Prove that $\cos \theta = 2 \sin \theta$ has a solution in the interval $[\pi, 2\pi]$. Hint: rephrase this as an intermediate value problem, don't try to find θ directly.