MATH 151: WORKSHOP 1

IAN COLEY

Problem 1. A student was faced by the problem "Solve $|3x - 5| \ge 2$ " and wrote

$$|3x - 5| = |3x + (-5)| = |3x| + |-5| = |3x| + 5$$

and then concluded that $|3x - 5| \ge 2$ if and only if $|3x| \ge -3$, so this is true for all real numbers. What went wrong? What is the correct answer?

Problem 2. Assume that f(x) and g(x) are both odd functions defined on all real numbers. Consider the new functions $h(x) = f(x) \cdot g(x)$ and k(x) = f(g(x)). Prove that h(x) is even and k(x) is odd. Note: you can't prove this using graphs or examples!

Problem 3. Consider the functions $f(x) = \sqrt{x-1}$ and $g(x) = \frac{1}{3x+2}$.

- (a) What is the domain of f(x)? Of g(x)?
- (b) What is the equation for $(f \circ g)(x)$? What is its domain?
- (c) What is the equation for $(g \circ f)(x)$? What is its domain?

Problem 4. Answer the following trigonometric problems:

- (a) Compute $\sin(-7\pi/6)$ by comparing it to a "key" trigonometric value that you've memorised.
- (b) Compute $\cos(\pi/12)$ using the double-angle identity and the difference-ofangles identity,
- (c) If $\sin \theta = -\sqrt{3}/2$, what are the possible values for θ ?
- (d) If $\sin \theta = 2/7$, what are the possible values for $\tan \theta$?

Problem 5. Let $\theta = \cos^{-1}(-3/4)$.

- (a) What quadrant is θ in?
- (b) Using that information, draw a right triangle in which θ appears.
- (c) Using that triangle, compute $\sin(\cos^{-1}(-3/4))$ with the appropriate sign.

Problem 6. Using the strategy in the previous problem, compute $\cos(\tan^{-1}(x))$.

Problem 7. Explain how the horizontal line test proves whether a function is injective or not. You may use graphs to demonstrate your argument, but make sure you use some words.