MATH 151: WORKSHOP 1

IAN COLEY

Problem 1. A student was faced by the problem "Solve $|3 x-5| \geq 2$ " and wrote

$$
|3 x-5|=|3 x+(-5)|=|3 x|+|-5|=|3 x|+5
$$

and then concluded that $|3 x-5| \geq 2$ if and only if $|3 x| \geq-3$, so this is true for all real numbers. What went wrong? What is the correct answer?

Problem 2. Assume that $f(x)$ and $g(x)$ are both odd functions defined on all real numbers. Consider the new functions $h(x)=f(x) \cdot g(x)$ and $k(x)=f(g(x))$. Prove that $h(x)$ is even and $k(x)$ is odd. Note: you can't prove this using graphs or examples!
Problem 3. Consider the functions $f(x)=\sqrt{x-1}$ and $g(x)=\frac{1}{3 x+2}$.
(a) What is the domain of $f(x)$? Of $g(x)$?
(b) What is the equation for $(f \circ g)(x)$? What is its domain?
(c) What is the equation for $(g \circ f)(x)$? What is its domain?

Problem 4. Answer the following trigonometric problems:
(a) Compute $\sin (-7 \pi / 6)$ by comparing it to a "key" trigonometric value that you've memorised.
(b) Compute $\cos (\pi / 12)$ using the double-angle identity and the difference-ofangles identity,
(c) If $\sin \theta=-\sqrt{3} / 2$, what are the possible values for θ ?
(d) If $\sin \theta=2 / 7$, what are the possible values for $\tan \theta$?

Problem 5. Let $\theta=\cos ^{-1}(-3 / 4)$.
(a) What quadrant is θ in?
(b) Using that information, draw a right triangle in which θ appears.
(c) Using that triangle, compute $\sin \left(\cos ^{-1}(-3 / 4)\right)$ with the appropriate sign.

Problem 6. Using the strategy in the previous problem, compute $\cos \left(\tan ^{-1}(x)\right)$.
Problem 7. Explain how the horizontal line test proves whether a function is injective or not. You may use graphs to demonstrate your argument, but make sure you use some words.

