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1. (10 points) Using implicit differentiation, compute
dy

dx
for the implicitly defined

function √
4x− y + 9 = x3 + y2

Then compute the equation of the tangent line at (1, 3).

Solution. First, we take the derivative of both sides, using y′ for
dy

dx
:

1

2
(4x− y)−1/2(4− y′) = 3x2 + 2y · y′

2√
4x− y

− y′

2
√

4x− y
= 3x2 + 2y · y′

We need to move all the y′ to one side and the other terms to the other:

2√
4x− y

− 3x2 = 2y · y′ + y′

2
√

4x− y
= y′

(
2y +

1

2
√

4x− y

)
The last thing to do is divide over. Some folks managed to rationalise the
denominators before this step, leading to the second possibility:

y′ =

2√
4x−y − 3x2

2y + 1
2
√
4x−y

=
4− 6x2

√
4x− y

4y
√

4x− y + 1

We now need to find the tangent line at (1, 3). Plugging in, we get y′(1, 3) = − 2
13

.
Then the equation of the tangent line should be familiar to us:

y − 3 = − 2

13
(x− 1).
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2. (10 points) Find the derivative of the following functions.

(a) f(x) = arctan(ln(x))

(b) g(x) = log3(cos(x))

Solution.

(a) It’s important to remember the derivative of arctan, as I emphasised in
class:

d

dx
arctan(x) =

1

1 + x2

So, combining with the chain rule, we get

d

dx
arctan(ln(x)) =

1

1 + (ln(x))2
· 1

x

(b) We can recall that

log3(x) =
ln(x)

ln(3)

so that we need to find the derivative of
ln(cos(x))

ln 3
. With the chain rule,

d

dx

ln(cos(x))

ln 3
=

1

cos(x) · ln(3)
· − sin(x) = −tan(x)

ln(3)
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3. (10 points) Consider the function f(x) =
x

x2 − x + 1
.

(a) Why does f(x) have an absolute maximum and absolute minimum on the
interval [0, 3]?

(b) Find these values.

Solution.

(a) There were many bad answers for this problem, most of them overly vague
and not getting to the point. Just going through the process of finding
critical points and all that is what we do once we know that the extreme
value theorem applies: f(x) is a continuous function on a closed interval, so
it achieves an absolute maximum and a minimum. It’s continuous because
the demoninator has no zeroes on [0, 3] (and in fact, no zeroes at all). The
absolute extrema occur (by Fermat’s theorem) at the endpoints or at any
critical points on the interior. Most people jumped straight to this part,
which should be contained in (b).

(b) We need the derivative, which more than a few people took incorrectly:

d

dx

x

x2 − x + 1
=

(x2 − x + 1)(1)− (x)(2x− 1)

(x2 − x + 1)2
=

1− x2

(x2 − x + 1)2

=
(1− x)(1 + x)

(x2 − x + 1)2

which gives the critical points x = −1, 1. The denominator is never zero,
as we pointed out above. We can throw away x = −1 because it’s not in
[0, 3] (which not everyone did). We only need to check f(x) at x = 1 and
the two endpoints:

f(0) = 0, f(1) = 1, f(3) =
3

7

Since these are the only options, (1, 1) is the maximum and (0, 0) is the
minimum.
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4. (10 points) Let g(x) = x4(x− 1)4.

(a) Find all the critical points of g(x).

(b) What does the Second Derivative Test tell us about these critical points?

(c) What does the First Derivative Test tell us about these critical points?

Solution.

(a) We can either use the product rule, or we can take a shortcut and use the
chain rule:

g(x) = x4(x− 1)4 = (x2 − x)4

=⇒ g′(x) = 4(x2 − x)3(2x− 1) = 4x3(x− 1)3(2x− 1)

which makes the three critical points x = 0, 1/2, 1. Many people didn’t find
1/2 because they didn’t factor g′(x) properly.

(b) One should address the actual critical points found in part (a) for this
problem: a surprising number of people did not. Nonetheless, partial credit
was given for correctly identifying what the Second Derivative Test does: it
classifies critical points as maxima (concave down), minima (concave up),
or inconclusive (g′′(x) = 0).

For us, we can compute (though it takes some time with the product and
chain rules)

g′′(x) = x2(x− 1)2
(
8(x2 − x) + 12(2x− 1)2

)
Put this way, it’s pretty clear that g′′(0) = g′′(1) = 0, telling us nothing
about the critical points. However, g′′(1/2) is comprised of three terms:
the first two are always positive, and the last term is (8(−1/4) + 0) < 0, so
the whole g′′(1/2) is negative. This corresponds to x = 1/2 being a local
maximum.

(c) We need to check the intervals of increasing and decreasing to see how g′(x)
changes (or doesn’t) as it passes through the critical points. We need test
points on the intervals (−∞, 0), (0, 1/2), (1/2, 1), (1,∞). We can compute:

g′(−1) < 0, g′(1/4) > 0, g′(3/4) < 0, g′(2) > 0.

It’s easier to get the signs than the actual numbers. This means that x = 0, 1
are local minima and x = 1/2 is (still) a local maximum.
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5. (10 points) Let x and y be positive numbers.

(a) Find x, y such that 2x+3y = 10 and the quantity xy2 is as large as possible.

(b) Can you find x, y as above so that xy2 is minimal? Why or why not?

Solution.

(a) We need to set up a one-variable problem, and we can use the substitution

2x + 3y = 10 =⇒ x =
10− 3y

2
= 5− 3

2
y

So we have to deal with the function

f(y) =

(
5− 3

2
y

)
· y2 = 5y2 − 3

2
y3

Taking the derivative,

f ′(y) = 10y − 9

2
y2 = y

(
10− 9

2
y

)

This gives us two critical points: y = 0 and y =
20

9
. The point y = 0 is not

positive, so we throw it out. We can them compute that the corresponding

x value is x =
5

3
.

(b) The interval we are working on is y ∈ (0, 10/3), because x > 0 requires
that y < 10/3 from the above equation. This interval is not closed, so
the extreme value theorem doesn’t apply and we aren’t required to have
a minimum or a maximum. We can see that xy2 gets really small as you
make y or x small – but it can’t actually achieve a minimum. Another
explanation is that the function only has two critical points, and y = 0 isn’t
in our domain (0, 10/3).
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6. (10 points) Let f(x) =
√
x.

(a) What does f(x) need to satisfy on the interval [1, 4] in order for the Mean
Value Theorem to apply?

(b) Find a number c such that c ∈ (1, 4) satisfies the Mean Value Theorem for
f(x) on [1, 4].

Solution.

(a) The Mean Value Theorem requires that f(x) needs to be continuous on
[1, 4] and differentiable on (1, 4). Luckily, it is.

(b) The Mean Value Theorem says that there is a c ∈ (1, 4) such that

f ′(c) =
f(4)− f(1)

4− 1
=

2− 1

3
=

1

3

We can also compute that f ′(x) =
1

2
√
x

, so we need to solve

1

2
√
c

=
1

3
=⇒

√
c =

3

2
=⇒ c =

9

4

and this is in the interval (1, 4), as promised.
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7. (10 points) Find the limit lim
x→0

(1 − 2x)3/x. If you use any rules or theorems for

computing limits, be sure to indicate where and why these techniques are used.

Solution. What if we just try plugging in? We get 1∞, which is definitely
indeterminate. We can’t do anything with this directly, but by the trick from
class we can take the natural log of the problem and solve it instead:

lim
x→0

(1− 2x)3/x = L =⇒ lim
x→0

ln
(
(1− 2x)3/x

)
= lim

x→0

3 ln(1− 2x)

x
= lnL.

Can we do this limit now? Plugging in, we get
0

0
, which means we can apply

L’Hôpital’s rule. It is important to notice this explicitly!

lnL = lim
x→0

−6
1−2x

1
= lim

x→0

−6

1− 2x
= −6

with the last step by direct computation. We now compute that L = e−6.
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8. (10 points) Use an appropriate linearization to estimate
1

1 + (1.01)2
. Be explicit

about the function f(x) and the point x = a that you choose.

Solution. The suspicious decimal 1.01 is pretty close to a = 1 in the equation

f(x) =
1

1 + x2
. There are other options, but this is by far the easiest choice. We

need to now compute f(1) and f ′(1). We have f(1) = 1/2 and

f ′(x) =
−2x

(1 + x2)2
=⇒ f ′(1) =

−2

22
= −1

2

This means that

f(1.01) = f(1) + (1.01− 1)f ′(1) =
1

2
+
−1

100
· 1

2
=

99

200
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9. (10 points) A ladder with length 10 feet is leaning against a vertical wall. The
bottom of the ladder is slipping away from the wall at a rate of 5 feet per second.
How fast is the top of the ladder sliding down the wall when the bottom of the
ladder is 8 feet away from the wall? As part of your solution, draw a picture
with explicit variable names for the various quantities involved.

Solution. Let x denote the horizontal distance from the ladder to the wall and
y the vertical distance from the ladder to the floor:

These variables are related by the equation

x2 + y2 = 102 = 100.

Taking derivatives, we have that

2x · x′ + 2y · y′ = 0

so all that remains is to plug in numbers. At x = 8, we can solve that y = 6.
Therefore:

2 · 8 · 5 + 2 · 6 · y′ = 0 =⇒ y′ = −80

12
= −20

3
ft/s
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10. (10 points) Consider g(x) =
3

x2 − 9
. Find the intervals where g(x) is increasing

and decreasing. Find the intervals where g(x) is concave up and concave down.
Find the critical points, inflection points, and the vertical and horizontal asymp-
totes of g(x). If you think a sketch would help, feel free to draw one, but a sketch
alone is not a solution.

Solution. First, we can address asymptotes. Because this is a rational func-
tion whose denominator has a higher degree than the numerator, we have that
lim

x→±∞
g(x) = 0, so y = 0 is the horizontal aymptote. For vertical asymptotes, we

have that the denominator equals zero at x = ±3.

Now, g′(x) =
−6x

(x2 − 9)2
. We have a critical point at x = 0, and g′(x) is not

defined at x = ±3, where the vertical asymptotes are. We need to check
(−∞,−3), (−3, 0), (0, 3), (3,∞) for the sign of g′(x). We can compute that

g′(−5) =
30

(25− 9)2
> 0, g′(−1) =

6

(1− 9)2
> 0,

g′(1) =
−6

(1− 9)2
< 0, g′(5) =

−30

(25− 9)2
< 0

so that gives us the intervals of increasing and decreasing. We also see that x = 0
is a local maximum.

Finally, we compute that

g′′(x) =
(x2 − 9)2(−6)− (−6x)(2(x2 − 9)(2x))

(x2 − 9)4

which is a bit difficult to get a handle on. Luckily, we can cancel out an x2 − 9
from the top and bottom terms right away, and simplify from there:

g′′(x) =
(x2 − 9)(−6)− (−6x)(2(2x))

(x2 − 9)3
=
−6x2 + 54 + 24x2

(x2 − 9)2
=

18x2 + 54

(x2 − 9)3

This is never zero, so there are no points of inflection. However, the con-
cavity can still change through the vertical asymptotes, so we need to check
(−∞,−3), (−3, 3), (3,∞). We have

g′′(−5) =
18(25) + 54

(25− 9)3
> 0, g′′(0) =

54

(−9)3
< 0, g′′(5) =

18(25) + 54

(25− 9)3
> 0

This means that we’re mostly concave up, except between the asymptotes. This
also reconfirms (via the Second Derivative Test) that x = 0 is a local maximum.


