Problem statement

The graph of $y=f^{\prime}(x)$, the derivative of the function $f(x)$, is shown to the right.
a) Use information from the graph of $f^{\prime}(x)$ to find (as well as possible) the x where the maximum value of $f(x)$ in the interval $1 \leq x \leq 3$ must occur. Explain using calculus why your answer is correct (that is, why the value of $f(x)$ for the x you select is larger than $f(x)$ at any other number in the interval).
b) Suppose that $f(3)=5$. Use information from the graph and the tangent line approximation for
$f(x)$ to find an approximate value of $f(3.04)$. Explain using calculus and information from the graph why your approximate value for $f(3.04)$ is greater than or less than the exact value of $f(3.04)$.

Problem statement a) Suppose you know that $f^{\prime}(x)=(x-1)(x-2)^{2}(x-3)^{3}(x-4)^{4}(x-$ $5)^{5}$. What are the critical points of f ? Which of them are local extrema, and what kind of local extrema are they?
b) Suppose you know that $g^{\prime}(x)=x(x-1)^{2 / 3}(x-2)^{3 / 5}(x-3)^{4 / 7}$. What are the critical points of g ? Which of them are local extrema, and what kind of local extrema are they?

Problem statement Below are the graphs of three functions $y=f(x)$. In just one of the graphs, it is true for all x that $\frac{d^{3} y}{d x^{3}}>0$. Which is the graph? Explain why the other two graphs could not possibly satisfy the condition $\frac{d^{3} y}{d x^{3}}>0$ for all x.
(A)

(B)

(C)

Problem statement Find the limits for the following indeterminate forms of the type " $\infty-\infty$ ".
a) $\lim _{x \rightarrow 0} \frac{1}{\sin x}-\frac{1}{x}$.
b) $\lim _{x \rightarrow 0} \frac{1}{x^{2}}-\frac{1}{x}$.
c) $\lim _{x \rightarrow 0} \frac{1+x}{x}-\frac{1-x}{x}$.

