Problem statement An alien spaceship is found. A major part of the spaceship is a thin metal bar which is 120 meters long (metric aliens) with a cross-section of 1 square centimeter. The bar is heavy and has varying density. A metallurgist samples of the bar at 20 meter intervals, and finds the density of the samples (in grams per cubic centimeter).

<table>
<thead>
<tr>
<th>Meter mark</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30.4</td>
</tr>
</tbody>
</table>
| 20 | ... | Data lost. (Stolen by aliens?)
| 40 | 46.5 | |
| 60 | 65.8 |
| 80 | 29.2 |
| 100 | 52.1 |
| 120 | ... | Lunch break.|

Estimate the total weight of the alien object. Is it likely that one person could lift it?

Problem statement a) Suppose \(f(x) \) is defined on \(0 \leq x \leq 1 \) by the following rule:

\[
 f(x) \text{ is the first digit in the decimal expansion for } x.
\]

For example, \(f(1/2) = 5 \) and \(f(0.719) = 7 \). Sketch the graph of \(y = f(x) \) on the unit interval with appropriate scales for \(x \) and for \(y \). Use a graphical interpretation of the definite integral to compute \(\int_0^1 f(x) \, dx \).

c) Suppose the function \(g(x) \) is defined as follows:

\[
 g(x) \text{ is the second digit in the decimal expansion for } x.
\]

For example, \(g(0.437) = 3 \). Compute \(\int_0^1 g(x) \, dx \). Again, a graph may help.

Problem statement a) Graph \(f(x) = 2 - |x| \) in the interval \(-1 \leq x \leq 3 \). Compute \(\int_{-1}^{3} f(x) \, dx \).

b) Graph \(g(x) = 2 - |x| \) in the interval \(-1 \leq x \leq 3 \). Compute \(\int_{-1}^{3} g(x) \, dx \).

c) Graph \(h(x) = |2 - x| \) in the interval \(-1 \leq x \leq 3 \). Compute \(\int_{-1}^{3} h(x) \, dx \).

Problem statement a) There are values of the constants \(A \) and \(B \) so that the derivative of \(Axe^x + Be^x \) is \(xe^x \). Find these values.

b) Compute \(\int_{1}^{2} xe^x \, dx \).

Happy Thanksgiving!