Problem statement Verify that $\int_{1}^{2} \frac{3 x^{2}+6 x+2}{x(x+1)(x+2)} d x=\ln 4$.
Problem statement Suppose $F(x)=\int_{0}^{x} e^{\left(t^{2}\right)} d t$.
a) Compute $\lim _{x \rightarrow \infty} \frac{x F(x)}{e^{\left(x^{2}\right)}}$.
b) Compute $\lim _{x \rightarrow 0} \frac{F(x)}{x e^{\left(x^{2}\right)}}$.

Problem Statement

Compute $\int \sec x d x$

Problem statement The graph of f is shown to the right. The function $F(x)$ is defined by $F(x)=$ $\int_{0}^{x} f(t) d t$ for $0 \leq x \leq 4$.
a) Find $F(0)$ and $F(3)$.
b) Find $F^{\prime}(1)$.
c) For what value of x does $F(x)$ have its maximum value? What is this maximum value?

Where is F increasing? decreasing? Concave up? Concave down? Relate all these answers to the graph of f.

