Problem 1 :

A cylinder vase having an ellipse base is placed in front of a wall as shown in the figure. Assume that x -axis represents the wall and the equation of the ellipse is given by $\frac{(x-2)^{2}}{4}+(y-2)^{2}=1$. If a candle is placed at point $(2,4)$, what will be the length of the shadow on the wall?

Hint: Find the equations of the lines which are tangent to the ellipse and passing through $(2,4)$.

Problem 2: Let $f(x)$ be given by

$$
f(x)= \begin{cases}3 x, & \text { if } x \leq 0 \\ k x+2 k x^{2}, & \text { if } x>0\end{cases}
$$

where k is some (unspecified) real number.
(a) For what values of k (if any) is the function $f(x) 1$) continuous? 2) differentiable?
(b) Choose some k such that $f(x)$ is differentiable. Sketch the graphs of $f(x), f^{\prime}(x)$ for this value of k.
(c) Does there exist a value of k such that $f^{\prime}(x)$ is differentiable everywhere? If so, find this value of k, and if not, explain why not.
(d) Describe the function $f^{\prime \prime \prime}(x)$. Does it depend on k ? What about the fourth or fifth derivatives of f ?

Problem 3 An unidentified object moves along the s-axis, with displacement $s=s(t)$ (meters), velocity $v=v(t)(\mathrm{m} / \mathrm{sec})$ and acceleration $a=a(t)\left(\mathrm{m} / \mathrm{sec}^{2}\right)$. It so happens that the velocity and displacement are related by the equation $v=\sqrt{8 s+16}$. Moreover, at the instant $t=0$, the object is observed at $s=6$.
a) Show that a is constant, and find its value.
b) Graph v as a function of s.
c) Graph v as a function of t.

Problem 4 An object is moving along the parabola $y=3 x^{2}$.
a) When it passes through the point $(2,12)$, its "horizontal" velocity is $\frac{d x}{d t}=3$. What is its "vertical" velocity at that instant?
b) If it travels in such a way that $\frac{d x}{d t}=3$ for all t, then what happens to $\frac{d y}{d t}$ as $t \rightarrow+\infty$?
c) If, however, it travels in such a way that $\frac{d y}{d t}$ remains constant, then what happens to $\frac{d x}{d t}$ as $t \rightarrow+\infty$?

