Problem 1

Consider the following functions.
(a) $f(x)=\sin (x)$
(b) $f(x)=(1 / x)$
(c) $f(x)=\sqrt{(x-1)}$

There is a pattern in the derivatives of these function. We will discover and establish it.
a Compute the first, second, and third derivative of each of these functions.
b Propose a general formula for $f^{(n)}(x)$. This will be interms of n.
c Verify the proposed formula in two steps. Step 1 - verify the formula when $n=1$. Step 2- assuming formula is true for a certain value of n, let us say for $n=k$, show that formula is valid for the next value of $n=k+1$.

Problem 2 Suppose that $f(x)$ and $g(x)$ are differentiable functions, and the following information is known about them:

$$
f(2)=-3 \quad f^{\prime}(2)=5 \quad g(2)=1 \quad g^{\prime}(2)=2 \quad g(0)=2 \quad g^{\prime}(0)=4
$$

a) If $F(x)=\frac{f(x)}{g(x)}$, compute $F(2)$ and $F^{\prime}(2)$.
b) If $G(x)=x^{3} f(x)-7 g(x)$, compute $G(2)$ and $G^{\prime}(2)$.
c) If $H(x)=\frac{3+e^{x}}{g(x)}$, compute $H(0)$ and $H^{\prime}(0)$.

