Problem statement A continuous function f is defined on the interval $[-2,2]$. The values of f at some of the points of the interval are given by the following table:

x	-2	-1	0	1	2
$f(x)$	2	-1	2	-1	2

a) Using only this information, what can be concluded about the roots of f, that is, the solutions of $f(x)=0$, in the interval $[-2,2]$? The answer should be something like: f has at least 8 roots in $[-2,2]$, or f has at most 6 roots in $[-2,2]$.
Suggestion Use the Intermediate Value Theorem on each of the intervals $[-2,-1],[-1,0]$, $[0,1]$, and $[1,2]$.
b) If $f(x)=x^{4}-4 x^{2}+2$, verify that the relevant values of f are given by the table above.
i) Sketch the graph of $y=f(x)$ in the viewing window $[-2.5,2.5] \times[-3,3]$.
ii) How many roots does f have in the interval $[-2,2]$? Find the roots algebraically. Suggestion: Let $t=x^{2}$ and solve with the quadratic formula. Then find x.
c) If $f(x)=x^{4}-4 x^{2}+2+5(2 x-1) x\left(x^{2}-1\right)\left(x^{2}-4\right)$. Verify that the relevant values of f are given by the table above.
i) Sketch the graph of $y=f(x)$ in the viewing window $[-2.5,2.5] \times[-80,80]$.
ii) Explain why f has at least one root in each of the intervals $(-2,1),(-1,0),(0,1)$, and (1,2).
iii) Sketch the graph of $y=f(x)$ in the viewing window $[0,1] \times[-1,3]$.
$i v)$ How many roots does f have in the interval $[0,1]$?
Approximate the roots of f in $[0,1]$ to three decimal places using a calculator.
d) Having done b) and c), was your original conclusion in part a) correct?

Problem statement a) Suppose $f(x)=3^{x}$. Plot $y=f(x)$ in the square window defined by $-1 \leq x \leq 1$ and $0 \leq y \leq 2$. Also plot the secant lines connecting ($0, f(0)$) and $(0+h, f(0+h))$ for $h=.5$ and $h=.25$ in the same window. Give a table of values of the slope of the secant lines connecting $(0, f(0))$ and $\left(10^{-j}, f\left(10^{-j}\right)\right)$ when j is a positive integer ranging from 1 to 5 . What is an equation of the line tangent to $y=3^{x}$ at $(0,1)$?
b) Suppose $g(x)=6 x \arctan \left(\frac{\ln x}{x^{3}+2}\right)$. Plot $y=g(x)$ in the square window defined by $0 \leq x \leq 2$ and $-1 \leq y \leq 1$. Also plot the secant lines connecting $(1, g(1))$ and $(1+h, g(1+h))$ for $h=.5$ and $h=.25$ in the same window. Give a table of values of the slope of the secant lines connecting $(1, g(1))$ and $\left(1+10^{-j}, g\left(1+10^{-j}\right)\right)$ when j is a positive integer ranging from 1 to 5 . What is an equation of the line tangent to $y=6 x \arctan \left(\frac{\ln x}{x^{3}+2}\right)$ at $(1,0)$?
Problem statement Suppose that A, B, C, and D are constants and f is the cubic polynomial $f(x)=A x^{3}+B x^{2}+C x+D$. Suppose also that the tangent line to $y=f(x)$ at $x=0$ is $y=x$ and the tangent line at $x=2$ is given by $y=2 x-3$. Find the values of A, B, C, and D. Then sketch the graph of $y=f(x)$ and the two tangent lines for $-2 \leq x \leq 4$.
Problem statement Some lines which are tangent to the parabola $y=x^{2}$ also pass through the point $(2,3)$. Find all of these lines. Graph the parabola and the tangent lines which were found on the same coordinate axes.

