Problem statement A continuous function f is defined on the interval [-2, 2]. The values of f at some of the points of the interval are given by the following table:

x	-2	-1	0	1	2
f(x)	2	-1	2	-1	2

a) Using only this information, what can be concluded about the roots of f, that is, the solutions of f(x) = 0, in the interval [-2, 2]? The answer should be something like: f has at least 8 roots in [-2, 2], or f has at most 6 roots in [-2, 2].

Suggestion Use the Intermediate Value Theorem on each of the intervals [-2, -1], [-1, 0], [0, 1], and [1, 2].

b) If $f(x) = x^4 - 4x^2 + 2$, verify that the relevant values of f are given by the table above. *i*) Sketch the graph of y = f(x) in the viewing window $[-2.5, 2.5] \times [-3, 3]$.

ii) How many roots does f have in the interval [-2,2]? Find the roots algebraically. Suggestion: Let $t = x^2$ and solve with the quadratic formula. Then find x.

c) If $f(x) = x^4 - 4x^2 + 2 + 5(2x - 1)x(x^2 - 1)(x^2 - 4)$. Verify that the relevant values of f are given by the table above.

- i) Sketch the graph of y = f(x) in the viewing window $[-2.5, 2.5] \times [-80, 80]$.
- ii) Explain why f has at least one root in each of the intervals (-2, 1), (-1, 0), (0, 1), and (1, 2).
- *iii)* Sketch the graph of y = f(x) in the viewing window $[0, 1] \times [-1, 3]$.
- iv) How many roots does f have in the interval [0, 1]?

Approximate the roots of f in [0, 1] to three decimal places using a calculator.

d) Having done b) and c), was your original conclusion in part a) correct?

Problem statement a) Suppose $f(x) = 3^x$. Plot y = f(x) in the square window defined by $-1 \le x \le 1$ and $0 \le y \le 2$. Also plot the secant lines connecting (0, f(0)) and (0 + h, f(0 + h)) for h = .5 and h = .25 in the same window. Give a table of values of the slope of the secant lines connecting (0, f(0)) and $(10^{-j}, f(10^{-j}))$ when j is a positive integer ranging from 1 to 5. What is an equation of the line tangent to $y = 3^x$ at (0, 1)?

b) Suppose $g(x) = 6x \arctan\left(\frac{\ln x}{x^3+2}\right)$. Plot y = g(x) in the square window defined by $0 \le x \le 2$ and $-1 \le y \le 1$. Also plot the secant lines connecting (1, g(1)) and (1+h, g(1+h)) for h = .5 and h = .25 in the same window. Give a table of values of the slope of the secant lines connecting (1, g(1)) and $(1+10^{-j}, g(1+10^{-j}))$ when j is a positive integer ranging from 1 to 5. What is an equation of the line tangent to $y = 6x \arctan\left(\frac{\ln x}{x^3+2}\right)$ at (1, 0)?

Problem statement Suppose that A, B, C, and D are constants and f is the cubic polynomial $f(x) = Ax^3 + Bx^2 + Cx + D$. Suppose also that the tangent line to y = f(x) at x = 0 is y = x and the tangent line at x = 2 is given by y = 2x - 3. Find the values of A, B, C, and D. Then sketch the graph of y = f(x) and the two tangent lines for $-2 \le x \le 4$.

Problem statement Some lines which are tangent to the parabola $y = x^2$ also pass through the point (2,3). Find all of these lines. Graph the parabola and the tangent lines which were found on the same coordinate axes.