Problem statement A continuous function \(f \) is defined on the interval \([-2, 2]\). The values of \(f \) at some of the points of the interval are given by the following table:

<table>
<thead>
<tr>
<th>(x)</th>
<th>(-2)</th>
<th>(-1)</th>
<th>(0)</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
</tr>
</tbody>
</table>

a) Using only this information, what can be concluded about the roots of \(f \), that is, the solutions of \(f(x) = 0 \), in the interval \([-2, 2]\)? The answer should be something like: \(f \) has at least 8 roots in \([-2, 2]\), or \(f \) has at most 6 roots in \([-2, 2]\).

Suggestion Use the Intermediate Value Theorem on each of the intervals \([-2, -1]\), \([-1, 0]\), \([0, 1]\), and \([1, 2]\).

b) If \(f(x) = x^4 - 4x^2 + 2 \), verify that the relevant values of \(f \) are given by the table above.

 i) Sketch the graph of \(y = f(x) \) in the viewing window \([-2.5, 2.5] \times [-3, 3]\).

 ii) How many roots does \(f \) have in the interval \([-2, 2]\)? Find the roots algebraically.

 Suggestion: Let \(t = x^2 \) and solve with the quadratic formula. Then find \(x \).

c) If \(f(x) = x^4 - 4x^2 + 2 + 5(2x - 1)x(x^2 - 1)(x^2 - 4) \). Verify that the relevant values of \(f \) are given by the table above.

 i) Sketch the graph of \(y = f(x) \) in the viewing window \([-2.5, 2.5] \times [-80, 80]\).

 ii) Explain why \(f \) has at least one root in each of the intervals \((-2, 1), (-1, 0), (0, 1), \) and \((1, 2)\).

 iii) Sketch the graph of \(y = f(x) \) in the viewing window \([0, 1] \times [-1, 3]\).

 iv) How many roots does \(f \) have in the interval \([0, 1]\)?

Approximate the roots of \(f \) in \([0, 1]\) to three decimal places using a calculator.

d) Having done b) and c), was your original conclusion in part a) correct?

Problem statement a) Suppose \(f(x) = 3^x \). Plot \(y = f(x) \) in the square window defined by \(-1 \leq x \leq 1\) and \(0 \leq y \leq 2\). Also plot the secant lines connecting \((0, f(0))\) and \((0 + h, f(0 + h))\) for \(h = .5\) and \(h = .25\) in the same window. Give a table of values of the slope of the secant lines connecting \((0, f(0))\) and \((10^{-j}, f(10^{-j}))\) when \(j\) is a positive integer ranging from 1 to 5. What is an equation of the line tangent to \(y = 3^x \) at \((0, 1)\)?

b) Suppose \(g(x) = 6x \arctan\left(\frac{\ln x}{x^3 + 2}\right) \). Plot \(y = g(x) \) in the square window defined by \(0 \leq x \leq 2\) and \(-1 \leq y \leq 1\). Also plot the secant lines connecting \((1, g(1))\) and \((1 + h, g(1 + h))\) for \(h = .5\) and \(h = .25\) in the same window. Give a table of values of the slope of the secant lines connecting \((1, g(1))\) and \((10^{-j}, g(10^{-j}))\) when \(j\) is a positive integer ranging from 1 to 5. What is an equation of the line tangent to \(y = 6x \arctan\left(\frac{\ln x}{x^3 + 2}\right) \) at \((1, 0)\)?

Problem statement Suppose that \(A, B, C, \) and \(D \) are constants and \(f \) is the cubic polynomial \(f(x) = Ax^3 + Bx^2 + Cx + D \). Suppose also that the tangent line to \(y = f(x) \) at \(x = 0 \) is \(y = x \) and the tangent line at \(x = 2 \) is given by \(y = 2x - 3 \). Find the values of \(A, B, C, \) and \(D \). Then sketch the graph of \(y = f(x) \) and the two tangent lines for \(-2 \leq x \leq 4\).

Problem statement Some lines which are tangent to the parabola \(y = x^2 \) also pass through the point \((2, 3)\). Find all of these lines. Graph the parabola and the tangent lines which were found on the same coordinate axes.