Problem statement The numbers R_1 , R_2 , R_3 , and R satisfy the following equation:

$$\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} = \frac{1}{R}$$

(Physics and engineering students may recognize this as a formula for the total resistance, R, of a circuit composed of three resistances R_1 , R_2 , and R_3 connected in parallel.)

a) If $R_1 = 1$ and $R_2 = 2$ and $R_3 = 3$, compute R exactly.

b) If both R_1 and R_3 are held constant, and R_2 is increased by .05, what is the approximate change in R?

c) If both R_1 and R_2 are held constant, and R_3 is increased by .05, what is the approximate change in R?

Problem statement To the right is part of the graph of $5x^3y - 3xy^2 + y^3 = 6$. Verify that (1, 2) is a point on this curve. There's a nearby point on the curve whose coordinates are (1.07, u). What is an approximate value for u? There's a nearby point on the curve whose coordinates are (.98, v). What is an approximate value for v? There's a nearby point on the curve whose coordinates are (w, 2.04). What is an approximate value for w? Is the graph consistent with your answers?

Problem statement

Using linear approximation, show that for any real number k,

$$(1+x)^k \approx 1 + kx$$

for small x. Use this to estimate $1.02^{\sqrt{3}}$ and 1.02^{π} .

Problem statement For any constant c, define the function f_c with the formula $f_c(x) = x^3 + 2x^2 + cx$.

a) Graph $y = f_c(x)$ for these values of the parameter c: c = -1, 0, 1, 2, 3, 4. What are the similarities and differences among the graphs, and how do the graphs change as the parameter increases?

b) For what values of the parameter c will f_c have one local maximum and one local minimum? Use calculus. As c increases, what happens to the distance between the local maximum and the local minimum?

c) For what values of the parameter c will f_c have no local maximum or local minimum? Use calculus.

d) Are there any values of the parameter c for which f_c will have exactly one horizontal tangent line?

