Problem statement The numbers R_{1}, R_{2}, R_{3}, and R satisfy the following equation:

$$
\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}=\frac{1}{R}
$$

(Physics and engineering students may recognize this as a formula for the total resistance, R, of a circuit composed of three resistances R_{1}, R_{2}, and R_{3} connected in parallel.)
a) If $R_{1}=1$ and $R_{2}=2$ and $R_{3}=3$, compute R exactly.
b) If both R_{1} and R_{3} are held constant, and R_{2} is increased by .05 , what is the approximate change in R ?
c) If both R_{1} and R_{2} are held constant, and R_{3} is increased by .05 , what is the approximate change in R ?

Problem statement To the right is part of the graph of $5 x^{3} y-3 x y^{2}+y^{3}=6$. Verify that $(1,2)$ is a point on this curve. There's a nearby point on the curve whose coordinates are $(1.07, u)$. What is an approximate value for u ? There's a nearby point on the curve whose coordinates are $(.98, v)$. What is an approximate value for v ? There's a nearby point on the curve whose coordinates are ($w, 2.04$). What is an approximate value for w ? Is the graph consistent with your answers?

Problem statement

Using linear approximation, show that for any real number k,

$$
(1+x)^{k} \approx 1+k x
$$

for small x. Use this to estimate $1.02^{\sqrt{3}}$ and 1.02^{π}.
Problem statement For any constant c, define the function f_{c} with the formula $f_{c}(x)=$ $x^{3}+2 x^{2}+c x$.
a) Graph $y=f_{c}(x)$ for these values of the parameter $c: c=-1,0,1,2,3,4$. What are the similarities and differences among the graphs, and how do the graphs change as the parameter increases?
b) For what values of the parameter c will f_{c} have one local maximum and one local minimum? Use calculus. As c increases, what happens to the distance between the local maximum and the local minimum?
c) For what values of the parameter c will f_{c} have no local maximum or local minimum? Use calculus.
d) Are there any values of the parameter c for which f_{c} will have exactly one horizontal tangent line?

