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Abstract. We construct a variant of (real) DeRham cohomology and apply it to prove that
the integral cohomology of the Higson compactification of Rn has uncountably generated
nth integral cohomology.

1. Introduction

The Higson compactification of a non-compact complete Riemannian manifold was intro-
duced by Higson in [Hig92] and modified by Roe in [Roe93]. Here is the construction from
[Roe93].

We will say that a metric space is proper if closed balls of finite radius are compact.

Definition 1. Let M and Z be proper metric spaces and let φ : M → Z be a bounded
continuous function. We define the variation function Vrφ : M → R+ by

Vrφ(x) = sup{d(φ(y), φ(x)) : y ∈ B(x; r)}.

Definition 2. Let M and Z be proper metric spaces. We let Ch(M ; Z) denote the space
of all bounded continuous functions φ : M → Z such that Vr(φ) → 0 at infinity. We can
extend this definition to the case where Z is nonmetric by declaring that φ ∈ Ch(M ; Z) if
f ◦ φ ∈ Ch(M ; Z) for every continuous function f : Z → R. We will refer to elements of
Ch(M ; Z) as slowly oscillating functions.

Proposition 1. Ch(M ; C) is a C∗-algebra, which we will denote by Ch(M).

Proof. This is Lemma 5.3 of [Roe93]. �

Definition 3. The Higson compactification of M , which we denote by M̄ is the maximal
ideal space of Ch(M). The Higson corona of M is νM = M̄ −M .

The Higson compactification has the universal property that if Z is compact Hausdorff, a
continuous function f : M → Z extends to a continuous function f̄ : M̄ → Z if and only if
f ∈ Ch(M ; Z).

Remark. For the topologically inclined, the Higson compactification of M may also be con-
structed as follows. Let

e : M →
∏

f∈Ch(M ;R)

R

be defined by letting the f th coordinate of e(m) be f(m). The closure of e(M) in
∏

f∈Ch(M ;R) R
is the Higson compactification of M . One sees that e(M) is precompact by noting that since
the functions f ∈ Ch(M ; R) are bounded, e(M) is contained in a product of closed intervals.
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The Higson corona is interesting in its own right as a coarse invariant of proper metric spaces,
but the compactification comes up naturally in attacks on the Novikov conjecture and the
Gromov-Lawson conjecture. Typically, the proper metric space is the universal cover of a
finite K(Γ, 1). The Higson compactification is then the universal compactification in which
fundamental domains shrink to points at infinity. In [Roe93], it was conjectured that if a
space M is uniformly contractible, then the Higson compactification M̄ of M has trivial
cohomology. This would imply the rational Novikov conjecture for groups Γ such that BΓ is
a finite complex, and the Gromov-Lawson conjecture, which says that a closed Riemannian
manifold with contractible universal cover cannot admit a metric of positive scalar curvature.

Unfortunately, in [Kee94], it was shown that the first integral cohomology of M̄ is nontrivial
for all noncompact M and in [DF97] it was shown that the Higson compactification of Rn

has nonzero integral cohomology in all dimensions 1 . . . n, dimension n being the critical
dimension for the Novikov and Gromov-Lawson conjectures.

Recently, Dranishnikov, Ferry, and Weinberger [DFW] have shown that if Γ is a group such
that BΓ is a finite complex and EΓ has finite asymptotic dimension, then the cohomology
of M̄ is trivial with finite coefficients. In the same paper, it was shown that the rational
Novikov conjecture for a group Γ with BΓ a finite complex follows from the vanishing of the
mod 2 cohomology of ĒΓ. This means that integral vanishing results do not tell the entire
story and that there is hope for using Higson’s compactification to prove the Gromov-Lawson
conjecture and an interesting general Novikov results.

If M is a complete Riemannian n-manifold, an element of Hn(M̄) is represented by a map
φ : M̄ → K(Z, n). The image of M̄ is compact, so it lies in a finite skeleton L of K(Z, n),
which we embed in a high-dimensional euclidean space and thicken up to a smooth compact
codimension-zero manifold, N homotopy equivalent to L. The generator of Hn(N ; Z) is
represented in De Rham cohomology by a closed n-form ω.

We will show that φ can be taken to be a C∞ slowly oscillating function on Rn and that φ∗ω
is a well-defined element of the “slowly oscillating cohomology” of Rn, depending only on the
original cohomology class in Hn(R̄n; Z). We then show that an invariant involving volume
growth of slowly oscillating classes can be used to detect uncountably many different classes in
Hn(R̄n; Z). This all suggests the possibility that the integral cohomology groups Hn(M̄ ; Z)
may posses the structure of a real vector space, which would imply the Novikov and Gromov-
Lawson conjectures. Block and Weinberger, [BW92], encountered a phenomenon of this sort
in their construction of “uniformly finite” homology.

2. Smoothing slowly oscillating functions

We begin with a useful lemma.

Lemma 1. If ρ : R+ → R+ is a continuous monotone increasing function with limx→∞ ρ(x) =
∞, then there is a continuous monotone C∞ function µ : R+ → R+ so that

i. There is a K > 0 so that µ(x) < ρ(x) for all x > K.
ii. limx→∞ µ(x) = ∞ and so that

iii. limx→∞
dkµ
dxk (x) = 0 for all k ≥ 1.
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Proof. Choose a sequence a(n) so that a(1) ≥ 8, ρ(a(n)) > n+2, and so that a(n+1) > 2a(n)
for all n. Let σ(x) be the piecewise linear function interpolating the points (a(n), n). The
function σ is monotone increasing and σ(x) < ρ(x)− 1 for all x.

Let Ψ : R → R be a C∞ function supported on [−1, 1] so that Ψ(x) ≥ 0 for all x,∫∞
−∞ Ψ(x) dx = 1, and Ψ(x) = Ψ(−x) for all x.

Let

µ(x) =

∫ 2n

−2n

1

2n
Ψ

(
x− t

2n

)
σ(t) dt for

a(n) + a(n + 1)

2
≤ x ≤ a(n + 1) + a(n + 2)

2
.

This function is C∞ because it is equal to σ(x) in a neighborhood of the points a(n)+a(n+1)
2

,
so the piecewise definition splices together to give a C∞ function. Differentiation under the
integral sign shows that all derivatives of µ go to 0 at infinity. For instance, the value of

µ′(x) on [a(n)+a(n+1)
2

, a(n+1)+a(n+2)
2

] is less than n+2
2n times the maximum value of Ψ′(x) on

[−1, 1]. This defines µ(x) for x ≥ K = a(1)+a(2)
2

and we extend to a monotone C∞ function
on R+. �

Lemma 2. If f : Rn → R is a slowly oscillating function and ε > 0 is given, f can be
ε-approximated by a smooth function f̄ so that all derivatives of f̄ go to zero at infinity and
so that f − f̄ is slowly oscillating.

Proof. Choose a monotone increasing function ρ : R+ → R+ so that

i. Vρ(|x|)f(x) < ε for all x
ii. limx→∞ Vρ(|x|)f(x) = 0
iii. limx→∞ ρ(x) = ∞.

Let µ be a monotone increasing smooth function less than ρ with derivatives going to 0 as
in Lemma 1. Define f̄ by

f̄(x) =

∫
Rn

[
1

µ(|x|)

]n

Ψ

(
|x− y|
µ(|x|)

)
f(y) dy

Here, Ψ is a smooth nonnegative C∞ function supported on [−1, 1] and constant in a neigh-
borhood of 0 such that

∫
Rn Ψ(|x|) = 1. The function f̄ approximates f because it averages f

over balls of radius µ(x) where f is nearly constant. The derivatives of f̄ go to zero because
the derivatives of Ψ are bounded, µ(x), which appears in denominators, goes to infinity, and
the derivatives of µ, which appear in numerators, go to zero. �

Lemma 3. If f and f̄ are as above, then f̄ extends to a map R̄n → Rn and f |νRn = f̄ |νRn.

�

Remark. It seems like this averaging process should work on a manifold of bounded geometry
by pulling f back to the tangent space at x and averaging as above.

3. The cohomology of R̄n

Let h : R̄n × I → K(Z, n) be a homotopy. Since R̄n is compact, this homotopy lies in a
skeleton L of K(Z, n). We embed L into R`, ` large, and let N be a regular neighborhood of
L in R`. Choose ε > 0 so that balls of radius 100ε centered at points of L are contained in N
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and choose a sequence of points 0 = t0 < t1 < . . . < tk = 1 so that diam(h(x× [ti, ti+1])) < ε
for i = 0 . . . k − 1 and x ∈ R̄n.

Approximate h|Rn × ti by a smooth function with derivatives going to zero by approximat-
ing its coordinate functions as in Lemma 2. Extend to R̄n and replace h by straight line
homotopies between the approximations on the intervals R̄n × [ti, ti+1].

Definition 4. We will say that a smooth k−form α on Rn is slowly oscillating if

α =
∑

I

aI(x1, . . . , xn) dxi1 ∧ . . . ∧ dxik

where the aI ’s are bounded C∞ functions with all derivatives going to 0 at infinity. We will
denote the vector space of slowly oscillating k−forms on M by Ωk

so(M).

Theorem 1 (Slowly oscillating Poincaré lemma). If f, g : R̄n → L are homotopic and
ω ∈ Ωk(N) is a smooth k−form, then f ∗ω−g∗ω = dα, where α is a smooth slowly oscillating
(k − 1)−form on Rn.

Proof. We begin by approximating f and g by smooth slowly oscillating maps as in Lemma
2. For ε small, the approximations are homotopic to the original maps by straight line
homotopies in N . By breaking the homotopy from f to g into pieces as above, we can
assume that there is a straight-line homotopy h(t,x) = t · f(x) + (1− t) · g(x) connecting f
and g.

We adapt the argument from p. 28 of [Fla63]. If U is an open domain in euclidean space,
the author constructs a map

K : Ωk+1(I × U) → Ωk(U)

so that

Kd + dK = j∗1 − j∗0 .

where j0 and j1 are inclusions into the bottom and top of I × U . The formula for K on

monomials is K(a(t,x)) dxH = 0 and K(a(t,x) dt ∧ dxH) =
(∫ 1

0
a(t,x) dt

)
dxH.

Writing f(x) = (f1(x), . . . , f`(x)), g(x) = (g1(x), . . . , g`(x)), and ω =
∑

aH(z) dzH, we have

h∗(ω) =
∑

H=(i1,...,ik)

aH(h(t,x)) dhi1 ∧ . . . dhik

and

dhij = (fij − gij) dt +
n∑

k=1

∂hij

∂xk

dxk

The functions aH(z) are bounded so the functions
∫ 1

0
aH(h(t,x)) dt are slowly oscillating.

The functions (fij −gij) and
∂hij

∂xk
are slowly oscillating, so α = Kh∗(ω) is a slowly oscillating

form. Since dα = g∗ω − f ∗ω, the proof is complete.
�
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Definition 5. We define the slowly oscillating cohomology of Rn to be the quotient

Hk
so(Rn) =

ker d : Ωk
so → Ωk+1

so
im d : Ωk−1

so → Ωk
so

It follows immediately from the Poincaré Lemma that there is a well-defined map

Hk(R̄n; Z) → Hk
so(Rn)

obtained by taking a form ω on a regular neighborhood of a skeleton of K(Z; k) and pulling
it back to a slowly oscillating form on Rn.

If ω is a slowly oscillating smooth n-form on Rn, we can define a map γ(ω) : R+ → R by
γ(ω)(r) =

∫
B(0; r)

ω. If two such forms represent the same cohomology class, we have∫
B(0; r)

ω1 − ω2 =

∫
B(0; r)

dα =

∫
S(0; r)

α

where α is slowly oscillating, so γ(ω1) − γ(ω2) is O(rn−1). This construction allows us to
distinguish uncountably many cohomology classes in Hn(R̄n; Z).

Example 1. Let c : T 2 → S2 be a smooth map that crushes the wedge of two circles to a
point. Let e : R2 → T 2 be the covering map and let f : R2 → S2 be the map c ◦ e(xα, yα)
with 0 < α < 1. Let ω be the volume form on S2, so the integral of f ∗ω over a square of side
m1/α is 4πm2 with a possible variation of O(m1/α) depending on the choice of representative
in the cohomology class.

Now consider ft(x, y) = c ◦ e(txα, tyα), with t ∈ R a constant. The integral of f ∗t ω over the
same square of side m1/α is approximately t2 times the value of the earlier integral, so the
variation obtained using different values of t is O(m2). This means that for 1/2 < α < 1,
we obtain uncountably many different elements of H2(R̄2; Z) by varying t.
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