VOLUME GROWTH, DE RHAM COHOMOLOGY, AND THE HIGSON COMPACTIFICATION

STEVE FERRY

ABSTRACT. We construct a variant of (real) DeRham cohomology and apply it to prove that the integral cohomology of the Higson compactification of \mathbb{R}^n has uncountably generated n^{th} integral cohomology.

1. INTRODUCTION

The Higson compactification of a non-compact complete Riemannian manifold was introduced by Higson in [Hig92] and modified by Roe in [Roe93]. Here is the construction from [Roe93].

We will say that a metric space is *proper* if closed balls of finite radius are compact.

Definition 1. Let M and Z be proper metric spaces and let $\phi : M \to Z$ be a bounded continuous function. We define the variation function $V_r\phi: M \to \mathbb{R}^+$ by

$$V_r\phi(x) = \sup\{d(\phi(y), \phi(x)) : y \in B(x; r)\}.$$

Definition 2. Let M and Z be proper metric spaces. We let $C_h(M; Z)$ denote the space of all bounded continuous functions $\phi : M \to Z$ such that $V_r(\phi) \to 0$ at infinity. We can extend this definition to the case where Z is nonmetric by declaring that $\phi \in C_h(M; Z)$ if $f \circ \phi \in C_h(M; Z)$ for every continuous function $f : Z \to \mathbb{R}$. We will refer to elements of $C_h(M; Z)$ as slowly oscillating functions.

Proposition 1. $C_h(M;\mathbb{C})$ is a C^* -algebra, which we will denote by $C_h(M)$.

Proof. This is Lemma 5.3 of [Roe93].

Definition 3. The Higson compactification of M, which we denote by \overline{M} is the maximal ideal space of $C_h(M)$. The Higson corona of M is $\nu M = \overline{M} - M$.

The Higson compactification has the universal property that if Z is compact Hausdorff, a continuous function $f: M \to Z$ extends to a continuous function $\bar{f}: \bar{M} \to Z$ if and only if $f \in C_h(M; Z)$.

Remark. For the topologically inclined, the Higson compactification of M may also be constructed as follows. Let

$$e: M \to \prod_{f \in C_h(M;\mathbb{R})} \mathbb{R}$$

be defined by letting the f^{th} coordinate of e(m) be f(m). The closure of e(M) in $\prod_{f \in C_h(M;\mathbb{R})} \mathbb{R}$ is the Higson compactification of M. One sees that e(M) is precompact by noting that since the functions $f \in C_h(M;\mathbb{R})$ are bounded, e(M) is contained in a product of closed intervals.

Date: July 22, 2007.

STEVE FERRY

The Higson corona is interesting in its own right as a coarse invariant of proper metric spaces, but the compactification comes up naturally in attacks on the Novikov conjecture and the Gromov-Lawson conjecture. Typically, the proper metric space is the universal cover of a finite $K(\Gamma, 1)$. The Higson compactification is then the universal compactification in which fundamental domains shrink to points at infinity. In [Roe93], it was conjectured that if a space M is uniformly contractible, then the Higson compactification \overline{M} of M has trivial cohomology. This would imply the rational Novikov conjecture for groups Γ such that $B\Gamma$ is a finite complex, and the Gromov-Lawson conjecture, which says that a closed Riemannian manifold with contractible universal cover cannot admit a metric of positive scalar curvature.

Unfortunately, in [Kee94], it was shown that the first integral cohomology of \overline{M} is nontrivial for all noncompact M and in [DF97] it was shown that the Higson compactification of \mathbb{R}^n has nonzero integral cohomology in all dimensions $1 \dots n$, dimension n being the critical dimension for the Novikov and Gromov-Lawson conjectures.

Recently, Dranishnikov, Ferry, and Weinberger [DFW] have shown that if Γ is a group such that $B\Gamma$ is a finite complex and $E\Gamma$ has finite asymptotic dimension, then the cohomology of \overline{M} is trivial with finite coefficients. In the same paper, it was shown that the rational Novikov conjecture for a group Γ with $B\Gamma$ a finite complex follows from the vanishing of the mod 2 cohomology of $\overline{E}\Gamma$. This means that integral vanishing results do not tell the entire story and that there is hope for using Higson's compactification to prove the Gromov-Lawson conjecture and an interesting general Novikov results.

If M is a complete Riemannian *n*-manifold, an element of $H^n(\overline{M})$ is represented by a map $\phi : \overline{M} \to K(\mathbb{Z}, n)$. The image of \overline{M} is compact, so it lies in a finite skeleton L of $K(\mathbb{Z}, n)$, which we embed in a high-dimensional euclidean space and thicken up to a smooth compact codimension-zero manifold, N homotopy equivalent to L. The generator of $H^n(N;\mathbb{Z})$ is represented in De Rham cohomology by a closed *n*-form ω .

We will show that ϕ can be taken to be a C^{∞} slowly oscillating function on \mathbb{R}^n and that $\phi^* \omega$ is a well-defined element of the "slowly oscillating cohomology" of \mathbb{R}^n , depending only on the original cohomology class in $H^n(\mathbb{R}^n; \mathbb{Z})$. We then show that an invariant involving volume growth of slowly oscillating classes can be used to detect uncountably many different classes in $H^n(\mathbb{R}^n; \mathbb{Z})$. This all suggests the possibility that the integral cohomology groups $H^n(\overline{M}; \mathbb{Z})$ may posses the structure of a real vector space, which would imply the Novikov and Gromov-Lawson conjectures. Block and Weinberger, [BW92], encountered a phenomenon of this sort in their construction of "uniformly finite" homology.

2. Smoothing slowly oscillating functions

We begin with a useful lemma.

Lemma 1. If $\rho : \mathbb{R}^+ \to \mathbb{R}^+$ is a continuous monotone increasing function with $\lim_{x\to\infty} \rho(x) = \infty$, then there is a continuous monotone C^{∞} function $\mu : \mathbb{R}^+ \to \mathbb{R}^+$ so that

- *i.* There is a K > 0 so that $\mu(x) < \rho(x)$ for all x > K.
- ii. $\lim_{x\to\infty}\mu(x)=\infty$ and so that
- iii. $\lim_{x\to\infty} \frac{d^k\mu}{dx^k}(x) = 0$ for all $k \ge 1$.

DE RHAM HIGSON

Proof. Choose a sequence a(n) so that $a(1) \ge 8$, $\rho(a(n)) > n+2$, and so that a(n+1) > 2a(n) for all n. Let $\sigma(x)$ be the piecewise linear function interpolating the points (a(n), n). The function σ is monotone increasing and $\sigma(x) < \rho(x) - 1$ for all x.

Let $\Psi : \mathbb{R} \to \mathbb{R}$ be a C^{∞} function supported on [-1,1] so that $\Psi(x) \geq 0$ for all x, $\int_{-\infty}^{\infty} \Psi(x) dx = 1$, and $\Psi(x) = \Psi(-x)$ for all x.

Let

$$\mu(x) = \int_{-2^n}^{2^n} \frac{1}{2^n} \Psi\left(\frac{x-t}{2^n}\right) \sigma(t) \, dt \quad \text{for} \quad \frac{a(n) + a(n+1)}{2} \le x \le \frac{a(n+1) + a(n+2)}{2}.$$

This function is C^{∞} because it is equal to $\sigma(x)$ in a neighborhood of the points $\frac{a(n)+a(n+1)}{2}$, so the piecewise definition splices together to give a C^{∞} function. Differentiation under the integral sign shows that all derivatives of μ go to 0 at infinity. For instance, the value of $\mu'(x)$ on $\left[\frac{a(n)+a(n+1)}{2}, \frac{a(n+1)+a(n+2)}{2}\right]$ is less than $\frac{n+2}{2^n}$ times the maximum value of $\Psi'(x)$ on [-1, 1]. This defines $\mu(x)$ for $x \ge K = \frac{a(1)+a(2)}{2}$ and we extend to a monotone C^{∞} function on \mathbb{R}^+ .

Lemma 2. If $f : \mathbb{R}^n \to \mathbb{R}$ is a slowly oscillating function and $\epsilon > 0$ is given, f can be ϵ -approximated by a smooth function \overline{f} so that all derivatives of \overline{f} go to zero at infinity and so that $f - \overline{f}$ is slowly oscillating.

Proof. Choose a monotone increasing function $\rho : \mathbb{R}^+ \to \mathbb{R}^+$ so that

- i. $V_{\rho(|x|)}f(x) < \epsilon$ for all x
- ii. $\lim_{x \to \infty} V_{\rho(|x|)} f(x) = 0$

iii.
$$\lim_{x\to\infty} \rho(x) = \infty$$
.

Let μ be a monotone increasing smooth function less than ρ with derivatives going to 0 as in Lemma 1. Define \bar{f} by

$$\bar{f}(\mathbf{x}) = \int_{\mathbb{R}^n} \left[\frac{1}{\mu(|\mathbf{x}|)} \right]^n \Psi\left(\frac{|\mathbf{x} - \mathbf{y}|}{\mu(|\mathbf{x}|)} \right) f(\mathbf{y}) \, d\mathbf{y}$$

Here, Ψ is a smooth nonnegative C^{∞} function supported on [-1, 1] and constant in a neighborhood of 0 such that $\int_{\mathbb{R}^n} \Psi(|\mathbf{x}|) = \mathbf{1}$. The function \bar{f} approximates f because it averages f over balls of radius $\mu(\mathbf{x})$ where f is nearly constant. The derivatives of \bar{f} go to zero because the derivatives of Ψ are bounded, $\mu(\mathbf{x})$, which appears in denominators, goes to infinity, and the derivatives of μ , which appear in numerators, go to zero.

Lemma 3. If
$$f$$
 and \bar{f} are as above, then \bar{f} extends to a map $\mathbb{R}^n \to \mathbb{R}^n$ and $f|\nu\mathbb{R}^n = \bar{f}|\nu\mathbb{R}^n$.

Remark. It seems like this averaging process should work on a manifold of bounded geometry by pulling f back to the tangent space at \mathbf{x} and averaging as above.

3. The cohomology of $\overline{\mathbb{R}}^n$

Let $h : \overline{\mathbb{R}}^n \times I \to K(\mathbb{Z}, n)$ be a homotopy. Since $\overline{\mathbb{R}}^n$ is compact, this homotopy lies in a skeleton L of $K(\mathbb{Z}, n)$. We embed L into \mathbb{R}^{ℓ} , ℓ large, and let N be a regular neighborhood of L in \mathbb{R}^{ℓ} . Choose $\epsilon > 0$ so that balls of radius 100 ϵ centered at points of L are contained in N

STEVE FERRY

and choose a sequence of points $0 = t_0 < t_1 < \ldots < t_k = 1$ so that diam $(h(\mathbf{x} \times [t_i, t_{i+1}])) < \epsilon$ for $i = 0 \ldots k - 1$ and $\mathbf{x} \in \mathbb{R}^n$.

Approximate $h|\mathbb{R}^n \times t_i$ by a smooth function with derivatives going to zero by approximating its coordinate functions as in Lemma 2. Extend to \mathbb{R}^n and replace h by straight line homotopies between the approximations on the intervals $\mathbb{R}^n \times [t_i, t_{i+1}]$.

Definition 4. We will say that a smooth k-form α on \mathbb{R}^n is slowly oscillating if

$$\alpha = \sum_{I} a_{I}(x_{1}, \dots, x_{n}) \, dx_{i_{1}} \wedge \dots \wedge dx_{i_{k}}$$

where the a_I 's are bounded C^{∞} functions with all derivatives going to 0 at infinity. We will denote the vector space of slowly oscillating k-forms on M by $\Omega^k_{so}(M)$.

Theorem 1 (Slowly oscillating Poincaré lemma). If $f, g : \mathbb{R}^n \to L$ are homotopic and $\omega \in \Omega^k(N)$ is a smooth k-form, then $f^*\omega - g^*\omega = d\alpha$, where α is a smooth slowly oscillating (k-1)-form on \mathbb{R}^n .

Proof. We begin by approximating f and g by smooth slowly oscillating maps as in Lemma 2. For ϵ small, the approximations are homotopic to the original maps by straight line homotopies in N. By breaking the homotopy from f to g into pieces as above, we can assume that there is a straight-line homotopy $h(t, \mathbf{x}) = t \cdot f(\mathbf{x}) + (1 - t) \cdot g(\mathbf{x})$ connecting f and g.

We adapt the argument from p. 28 of [Fla63]. If U is an open domain in euclidean space, the author constructs a map

$$K: \Omega^{k+1}(I \times U) \to \Omega^k(U)$$

so that

$$Kd + dK = j_1^* - j_0^*.$$

where j_0 and j_1 are inclusions into the bottom and top of $I \times U$. The formula for K on monomials is $K(a(t, \mathbf{x})) d\mathbf{x}^{\mathbf{H}} = 0$ and $K(a(t, \mathbf{x}) dt \wedge d\mathbf{x}^{\mathbf{H}}) = \left(\int_0^1 a(t, \mathbf{x}) dt\right) d\mathbf{x}^{\mathbf{H}}$.

Writing $f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_\ell(\mathbf{x})), g(\mathbf{x}) = (g_1(\mathbf{x}), \dots, g_\ell(\mathbf{x})), \text{ and } \omega = \sum a_H(\mathbf{z}) dz^{\mathbf{H}}$, we have $h^*(\omega) = \sum a_H(h(t, \mathbf{x})) dh_{i_1} \wedge \dots dh_{i_\ell}$

$$h^*(\omega) = \sum_{H = (i_1, \dots, i_k)} a_H(h(t, \mathbf{x})) \, dh_{i_1} \wedge \dots \, dh_{i_k}$$

and

$$dh_{i_j} = (f_{i_j} - g_{i_j}) dt + \sum_{k=1}^n \frac{\partial h_{i_j}}{\partial x_k} dx_k$$

The functions $a_H(\mathbf{z})$ are bounded so the functions $\int_0^1 a_H(h(t, \mathbf{x})) dt$ are slowly oscillating. The functions $(f_{i_j} - g_{i_j})$ and $\frac{\partial h_{i_j}}{\partial x_k}$ are slowly oscillating, so $\alpha = Kh^*(\omega)$ is a slowly oscillating form. Since $d\alpha = g^*\omega - f^*\omega$, the proof is complete.

4

Definition 5. We define the slowly oscillating cohomology of \mathbb{R}^n to be the quotient

$$H_{SO}^k(\mathbb{R}^n) = \frac{\ker d : \Omega_{SO}^k \to \Omega_{SO}^{k+1}}{\operatorname{im} d : \Omega_{SO}^{k-1} \to \Omega_{SO}^k}$$

It follows immediately from the Poincaré Lemma that there is a well-defined map

$$H^k(\mathbb{R}^n; \mathbb{Z}) \to H^k_{SO}(\mathbb{R}^n)$$

obtained by taking a form ω on a regular neighborhood of a skeleton of $K(\mathbb{Z}; k)$ and pulling it back to a slowly oscillating form on \mathbb{R}^n .

If ω is a slowly oscillating smooth n-form on \mathbb{R}^n , we can define a map $\gamma(\omega) : \mathbb{R}^+ \to \mathbb{R}$ by $\gamma(\omega)(r) = \int_{B(0;r)} \omega$. If two such forms represent the same cohomology class, we have

$$\int_{B(0;r)} \omega_1 - \omega_2 = \int_{B(0;r)} d\alpha = \int_{S(0;r)} \alpha$$

where α is slowly oscillating, so $\gamma(\omega_1) - \gamma(\omega_2)$ is $O(r^{n-1})$. This construction allows us to distinguish uncountably many cohomology classes in $H^n(\mathbb{R}^n; \mathbb{Z})$.

Example 1. Let $c: T^2 \to S^2$ be a smooth map that crushes the wedge of two circles to a point. Let $e: \mathbb{R}^2 \to T^2$ be the covering map and let $f: \mathbb{R}^2 \to S^2$ be the map $c \circ e(x^{\alpha}, y^{\alpha})$ with $0 < \alpha < 1$. Let ω be the volume form on S^2 , so the integral of $f^*\omega$ over a square of side $m^{1/\alpha}$ is $4\pi m^2$ with a possible variation of $O(m^{1/\alpha})$ depending on the choice of representative in the cohomology class.

Now consider $f_t(x,y) = c \circ e(tx^{\alpha}, ty^{\alpha})$, with $t \in \mathbb{R}$ a constant. The integral of $f_t^* \omega$ over the same square of side $m^{1/\alpha}$ is approximately t^2 times the value of the earlier integral, so the variation obtained using different values of t is $O(m^2)$. This means that for $1/2 < \alpha < 1$, we obtain uncountably many different elements of $H^2(\mathbb{R}^2; \mathbb{Z})$ by varying t.

References

- [BW92] Jonathan Block and Shmuel Weinberger. Aperiodic tilings, positive scalar curvature and amenability of spaces. J. Amer. Math. Soc., 5(4):907–918, 1992.
- [DF97] A. N. Dranishnikov and S. Ferry. On the Higson-Roe corona. Uspekhi Mat. Nauk, 52(5(317)):133– 146, 1997.
- [DFW] A. N. Dranishnikov, Steven C. Ferry, and Shmuel Weinberger. An étale approach to the Novikov Conjecture. *Comm. Pure Appl. Math. (to appear).*
- [Fla63] Harley Flanders. Differential forms with applications to the physical sciences. Academic Press, New York, 1963.
- [Hig92] Nigel Higson. On the relative K-theory of Baum and Douglas. preprint, 1992.
- [Kee94] James Keesling. The one-dimensional Čech cohomology of the Higson compactification and its corona. *Topology Proc.*, 19:129–148, 1994.
- [Roe93] John Roe. Coarse cohomology and index theory on complete Riemannian manifolds. Mem. Amer. Math. Soc., 104(497):x+90, 1993.

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, PISCATAWAY, NJ 08854 E-mail address: sferry@math.rutgers.edu