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ABSTRACT. We construct a variant of (real) DeRham cohomology and apply it to prove that
the integral cohomology of the Higson compactification of R™ has uncountably generated
nt" integral cohomology.

1. INTRODUCTION

The Higson compactification of a non-compact complete Riemannian manifold was intro-
duced by Higson in [Hig92] and modified by Roe in [Roe93]. Here is the construction from
[Roe93].

We will say that a metric space is proper if closed balls of finite radius are compact.

Definition 1. Let M and Z be proper metric spaces and let ¢ : M — Z be a bounded
continuous function. We define the variation function V,¢ : M — R™ by

Veg(x) = sup{d(d(y), d(x)) : y € B(x;r)}.

Definition 2. Let M and Z be proper metric spaces. We let Cy(M; Z) denote the space
of all bounded continuous functions ¢ : M — Z such that V,.(¢) — 0 at infinity. We can
extend this definition to the case where Z is nonmetric by declaring that ¢ € Cn(M;Z) if
foo e ChM;Z) for every continuous function f : Z — R. We will refer to elements of
Ch(M; Z) as slowly oscillating functions.

Proposition 1. C,,(M;C) is a C*-algebra, which we will denote by Cp,(M).
Proof. This is Lemma 5.3 of [Roe93]. O

Definition 3. The Higson compactification of M, which we denote by Mis the mazimal
ideal space of Cr,(M). The Higson corona of M is vM = M — M.

The Higson compactification has the universal property that if Z is compact Hausdorff, a
continuous function f : M — Z extends to a continuous function f : M — Z if and only if
fe Ch(M A )

Remark. For the topologically inclined, the Higson compactification of M may also be con-
structed as follows. Let
e: M — H R

fFECKH(MR)
be defined by letting the f* coordinate of e(m) be f(m). The closure of e(M) in [feo,um R

is the Higson compactification of M. One sees that e(M) is precompact by noting that since
the functions f € Cp,(M;R) are bounded, e(M) is contained in a product of closed intervals.
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The Higson corona is interesting in its own right as a coarse invariant of proper metric spaces,
but the compactification comes up naturally in attacks on the Novikov conjecture and the
Gromov-Lawson conjecture. Typically, the proper metric space is the universal cover of a
finite K(I", 1). The Higson compactification is then the universal compactification in which
fundamental domains shrink to points at infinity. In [Roe93], it was conjectured that if a
space M is uniformly contractible, then the Higson compactification M of M has trivial
cohomology. This would imply the rational Novikov conjecture for groups I' such that BI is
a finite complex, and the Gromov-Lawson conjecture, which says that a closed Riemannian
manifold with contractible universal cover cannot admit a metric of positive scalar curvature.

Unfortunately, in [Kee94], it was shown that the first integral cohomology of M is nontrivial
for all noncompact M and in [DF97] it was shown that the Higson compactification of R™
has nonzero integral cohomology in all dimensions 1...n, dimension n being the critical
dimension for the Novikov and Gromov-Lawson conjectures.

Recently, Dranishnikov, Ferry, and Weinberger [DFW] have shown that if I" is a group such
that BT is a finite complex and ET has finite asymptotic dimension, then the cohomology
of M is trivial with finite coefficients. In the same paper, it was shown that the rational
Novikov conjecture for a group I" with BT a finite complex follows from the vanishing of the
mod 2 cohomology of ET. This means that integral vanishing results do not tell the entire
story and that there is hope for using Higson’s compactification to prove the Gromov-Lawson
conjecture and an interesting general Novikov results.

If M is a complete Riemannian n-manifold, an element of H"(M) is represented by a map
¢: M — K(Z,n). The image of M is compact, so it lies in a finite skeleton L of K(Z,n),
which we embed in a high-dimensional euclidean space and thicken up to a smooth compact
codimension-zero manifold, N homotopy equivalent to L. The generator of H"(N;Z) is
represented in De Rham cohomology by a closed n-form w.

We will show that ¢ can be taken to be a C*° slowly oscillating function on R™ and that ¢*w
is a well-defined element of the “slowly oscillating cohomology” of R", depending only on the
original cohomology class in H"(R"™; Z). We then show that an invariant involving volume
growth of slowly oscillating classes can be used to detect uncountably many different classes in
H™(R™; Z). This all suggests the possibility that the integral cohomology groups H"(M; 7Z)
may posses the structure of a real vector space, which would imply the Novikov and Gromov-
Lawson conjectures. Block and Weinberger, [BW92], encountered a phenomenon of this sort
in their construction of “uniformly finite” homology.

2. SMOOTHING SLOWLY OSCILLATING FUNCTIONS

We begin with a useful lemma.

Lemma 1. Ifp : R™ — R" is a continuous monotone increasing function with lim, . p(z) =
0o, then there is a continuous monotone C* function p: Rt — RT so that

i. There is a K > 0 so that u(x) < p(x) for all x > K.
ii. limg, oo p(z) = 00 and so that
1. im0 (;Z—‘,:(:B) =0 for all k> 1.
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Proof. Choose a sequence a(n) so that a(1) > 8, p(a(n)) > n+2, and so that a(n+1) > 2a(n)
for all n. Let o(z) be the piecewise linear function interpolating the points (a(n),n). The
function o is monotone increasing and o(z) < p(z) — 1 for all z.

Let ¥ : R — R be a C* function supported on [—1,1] so that ¥(z) > 0 for all z,
2, ¥ (x)de =1, and ¥(x) = U(—z) for all z.

Let

u(m):/_%%@ <I2_nt)a(t)dt for a(n)+62l(n+1) SJJSa(n—l—l)—;—a(n—t—Q)'

This function is C'*° because it is equal to o(x) in a neighborhood of the points w,

so the piecewise definition splices together to give a C'*° function. Differentiation under the
integral sign shows that all derivatives of u go to 0 at infinity. For instance, the value of

"(x) on a(”)+a(”+1), alnt)+a(nt2)) 5o Jags than "2 times the maximum value of ¥/(z) on
H 2 2 2
—1,1|. This defines u(x) for x > K = a+a2) 4nd we extend to a monotone C™ function
H 2
on RT. d

Lemma 2. If f : R" — R is a slowly oscillating function and ¢ > 0 is gwen, f can be
e-approzimated by a smooth function [ so that all derivatives of f go to zero at infinity and
so that f — f is slowly oscillating.

Proof. Choose a monotone increasing function p : R™ — R* so that

i Viepf(z) < eforall z
ii. limx_)oo ‘/:0(|x‘)f(l‘) =0
iii. lim, e p(z) = 0.
Let p be a monotone increasing smooth function less than p with derivatives going to 0 as
in Lemma 1. Define f by

oo [ [mh (%) 1) dy

Here, W is a smooth nonnegative C* function supported on [—1, 1] and constant in a neigh-
borhood of 0 such that [;, U(|x|) = 1. The function f approximates f because it averages f
over balls of radius u(x) where f is nearly constant. The derivatives of f go to zero because
the derivatives of W are bounded, pu(x), which appears in denominators, goes to infinity, and
the derivatives of u, which appear in numerators, go to zero. 0

Lemma 3. If f and f are as above, then f extends to a map R* — R™ and f|lvR™ = f|vR".
O
Remark. It seems like this averaging process should work on a manifold of bounded geometry
by pulling f back to the tangent space at x and averaging as above.
3. THE COHOMOLOGY OF R"

Let h : R" x I — K(Z,n) be a homotopy. Since R™ is compact, this homotopy lies in a
skeleton L of K(Z,n). We embed L into R, ¢ large, and let N be a regular neighborhood of
L in R, Choose € > 0 so that balls of radius 100e centered at points of L are contained in N
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and choose a sequence of points 0 =ty < t; < ... <t = 1 so that diam(h(x X [t;, ti11])) <€
fori=0...k—1and x € R".

Approximate h|R™ x ¢; by a smooth function with derivatives going to zero by approximat-
ing its coordinate functions as in Lemma 2. Extend to R™ and replace h by straight line
homotopies between the approximations on the intervals R™ x [t;, ;1]

Definition 4. We will say that a smooth k—form « on R™ is slowly oscillating if

oz—g ar(xy, ..., x,)dey, Ao ANdx,

where the a;’s are bounded C'*° functions with all derivatives going to 0 at infinity. We will
denote the vector space of slowly oscillating k—forms on M by Q% ,(M).

Theorem 1 (Slowly oscillating Poincaré lemma). If f,g : R® — L are homotopic and

w € QF(N) is a smooth k—form, then f*w— g*w = da, where « is a smooth slowly oscillating
(k — 1)—form on R".

Proof. We begin by approximating f and g by smooth slowly oscillating maps as in Lemma
2. For € small, the approximations are homotopic to the original maps by straight line
homotopies in N. By breaking the homotopy from f to g into pieces as above, we can
assume that there is a straight-line homotopy h(t,x) =t - f(x) + (1 — t) - g(x) connecting f
and g.

We adapt the argument from p. 28 of [Fla63]. If U is an open domain in euclidean space,
the author constructs a map

K : QMY I x U) — QFU)
so that
Kd+dK = j7 — j;.
where jo and j; are inclusions into the bottom and top of I x U. The formula for K on

monomials is K (a(t,x)) dx" = 0 and K (a(t,x) dt A dx® (fo (t,x dt> dxH.

Writing f(x) = (f1(x), ..., fi(X)), 9(x) = (91(X), ..., ge(x)), and w = >_ ay(z) dzH, we have
Pw)= Y ag(h(t,x))dhi, A...dh,
(i1,

and

= (fi, — 95 dt+z e hi, dxy,

The functions ay(z) are bounded so the functions fol ay(h(t,x))dt are slowly oscillating.

The functions (f;, — gi,)
form. Since da = ¢g*w — f*w, the proof is complete.

so a = Kh*(w) is a slowly oscillating

O
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Definition 5. We define the slowly oscillating cohomology of R™ to be the quotient
kerd : Qk, — QFF!
imd : Q%' — Qk,
It follows immediately from the Poincaré Lemma that there is a well-defined map
H*(R™; Z) — Hgo(R")
obtained by taking a form w on a regular neighborhood of a skeleton of K(Z; k) and pulling
it back to a slowly oscillating form on R™.

Hgo(Rn) =

If w is a slowly oscillating smooth n-form on R", we can define a map vy(w) : RT — R by
Y(w)(r) = [ B(0:ry @- If two such forms represent the same cohomology class, we have

/ W] — Wy = / do = / «
B(0;7) B(0;7) S(0;7)

where a is slowly oscillating, so v(wi) — y(w2) is O(r"~'). This construction allows us to
distinguish uncountably many cohomology classes in H"(R™; Z).

Example 1. Let ¢ : T? — S? be a smooth map that crushes the wedge of two circles to a
point. Let e : R — T? be the covering map and let f : R* — S? be the map c o e(x®,y*)
with 0 < o < 1. Let w be the volume form on S?, so the integral of f*w over a square of side
mY* is 4xm? with a possible variation of O(m'/®) depending on the choice of representative
in the cohomology class.

Now consider fi(z,y) = coe(tz®, ty®), with t € R a constant. The integral of fiw over the
same square of side m'/® is approxzimately t> times the value of the earlier integral, so the
variation obtained using different values of t is O(m?). This means that for 1/2 < a < 1,
we obtain uncountably many different elements of H*(R?; Z) by varying t.
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